Skip to main content
Log in

Procedure for generation of catalyst-free PE-TG profiles and its consequence on calculated activation energies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Catalytic depolymerization of polyethylene (PE) over several aluminosilicate catalysts was studied using thermogravimetric (TG) analysis. Procedure was proposed for decoupling mass loss related directly to the catalyst and that of PE depolymerization. The benefit of this approach is twofold: (1) It enables a more realistic kinetic analysis, and (2) reduces the total number of required experiments with the pure catalyst by more than 50 %. The activation energies of PE depolymerization over different catalysts were calculated from the treated PE-TG profiles using advanced isoconversional analysis and were compared to those obtained from raw TG profiles. The presented analysis reveals that neglecting the mass loss associated with the aluminosilicate catalyst results in underestimated values of calculated activation energies at low PE conversions, while at high conversions the values of calculated activation energies were overestimated. The apparent PE depolymerization activation energy in the presence of applied catalysts increases in the following order: amorphous silica alumina <heulandite/clinoptilolite (M300) <alumina grafted montmorillonite within the conversion range from 0 to 95 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marcilla A, Beltrán MI, Gómez-Siurana A, Navarro R, Valdés F. A global kinetic model as a tool to reproduce the deactivation behaviour of the HZSM-5 zeolite in the catalytic cracking of low-density polyethylene. Appl Catal A. 2007;328:124–31.

    Article  CAS  Google Scholar 

  2. Renzini MS, Lerici LC, Sedran U, Pierella LB. Stability of ZSM-11 and BETA zeolites during the catalytic cracking of low-density polyethylene. J Anal Appl Pyrol. 2011;92:450–5.

    Article  CAS  Google Scholar 

  3. Lin YH, Yang MH, Yeh TF, Ger MD. Catalytic degradation of high density polyethylene over mesoporous and microporous catalysts in a fluidised-bed reactor. Polym Degrad Stab. 2004;86:121–8.

    Article  CAS  Google Scholar 

  4. Garforth AA, Lin YH, Sharratt PN, Dwyer J. Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor. Appl Catal A. 1998;169:331–42.

    Article  CAS  Google Scholar 

  5. Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal of the European Communities, 16. 1. 2003, page L 11/34.

  6. Saha B, Ghoshal AK. Model-free kinetics analysis of ZSM-5 catalyzed pyrolysis of waste LDPE. Thermochim Acta. 2007;453:120–7.

    Article  CAS  Google Scholar 

  7. Saha B, Reddy PK, Chowlu ACK, Ghoshal AK. Model-free kinetics analysis of nanocrystalline HZSM-5 catalyzed pyrolysis of polypropylene (PP). Thermochim Acta. 2008;468:94–100.

    Article  CAS  Google Scholar 

  8. Araujo AS, Fernandes VJ Jr, Fernandes GJT. Thermogravimetric kinetics of polyethelyne degradation over silicoaluminophosphate. Thermochim Acta. 2002;392–393:55–61.

    Article  Google Scholar 

  9. Djinović P, Tomše T, Grdadolnik J, Božič Š, Erjavec B, Zabilskiy M, Pintar A. Natural aluminosilicates for catalytic depolymerization of polyethylene to produce liquid fuel-grade hydrocarbons and low olefins. Catal Today. 2015;258:648–59.

    Article  Google Scholar 

  10. Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535–40.

    Article  CAS  Google Scholar 

  11. Saha B, Ghoshal AK. Model-free kinetics analysis of waste PE sample. Thermochim Acta. 2006;451:27–33.

    Article  CAS  Google Scholar 

  12. Yang J, Miranda R, Roy C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym Degrad Stab. 2001;73:455–61.

    Article  Google Scholar 

  13. Al-Salem SM, Lettieri P. Kinetic study of high density polyethylene (HDPE) pyrolysis. Chem Eng Res Des. 2010;88:1599–606.

    Article  CAS  Google Scholar 

  14. Kannan P, Ibrahim S, Reddy KSK, Al Shoaibi AC, Srinivasakannan A. Comparative analysis of the kinetic experiments in polyethylene pyrolysis. J Energy Resour Technol. 2013;136:024001 (6 pages).

    Article  Google Scholar 

  15. Chowlu ACK, Reddy PK, Ghoshal AK. Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE). Thermochim Acta. 2009;485:20–5.

    Article  CAS  Google Scholar 

  16. Coelho A, Costa L, Marques MM, Fonseca IM, Lemos MANDA, Lemos F. The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A. 2012;413–414:183–91.

    Article  Google Scholar 

  17. Shabtai J, Xiao X, Zmierczak W. Depolymerization-liquefaction of plastics and rubbers. 1. Polyethylene, polypropylene, and polybutadiene. Energy Fuels. 1997;11:76–87.

    Article  CAS  Google Scholar 

  18. Ding W, Liang J, Anderson LL. Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste. Fuel Process Technol. 1997;5:47–62.

    Article  Google Scholar 

  19. Ding WB, Tuntawiroon W, Liang J, Anderson LL. Depolymerization of waste plastics with coal over metal-loaded silica-alumina catalysts. Fuel Process Technol. 1996;49:49–63.

    Article  CAS  Google Scholar 

  20. Marcilla A, Gómez-Siurana A, Valdés F. Catalytic cracking of low-density polyethylene over H-Beta and HZSM-5 zeolites: influence of the external surface Kinetic model. Polym Degrad Stab. 2007;92:197–204.

    Article  CAS  Google Scholar 

  21. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  22. Vyazovkin S, Goriyachko V. Potentialities of software for kinetic processing of thermoanalytical data by the isoconversion method. Thermochim Acta. 1992;194:221–30.

    Article  CAS  Google Scholar 

  23. Caillot M, Chaumonnot A, Digne M, Van Bokhoven JA. Creation of Brønsted acidity by grafting aluminum isopropoxide on silica under controlled conditions: determination of the number of Brønsted sites and their turnover frequency for m-Xylene isomerization. ChemCatChem. 2014;6:832–41.

    Article  CAS  Google Scholar 

  24. Hensen EJM, Poduval DG, Magusin PCMM, Coumans AE, van Veen JAR. Formation of acid sites in amorphous silica-alumina. J Catal. 2010;269:201–18.

    Article  CAS  Google Scholar 

  25. Woolery GL, Kuehl GH, Timken HC, Chester AW, Vartuli JC. On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites. 1997;19:288–96.

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  27. Cao R, Naya S, Artiaga R, García A, Varela A. Logistic approach to polymer degradation in dynamic TGA. Polym Degrad Stab. 2004;85:667–74.

    Article  CAS  Google Scholar 

  28. Barbadillo F, Fuentes A, Naya S, Cao R, Mier JL, Artiaga R. Evaluating the logistic mixture model on real and simulated TG curves. J Therm Anal Calorim. 2007;87:223–7.

    Article  CAS  Google Scholar 

  29. Chen HX, Liu NA, Shu LF, Zong RW. Smoothing and differentiation of thermogravimetric data of biomass materials. J Therm Anal Calorim. 2004;78:1029–41.

    Article  CAS  Google Scholar 

  30. Zeolite Molecular Sieves: thermal gravimetric analysis (Colby College). 2016. http://www.colby.edu/chemistry/PChem/lab/TGA.pdf. Accessed 29 Feb 2016.

  31. Várhegyi G, Chen H, Godoy S. Thermal decomposition of wheat, oat, barley and Brassica carinata straws. A kinetic study. Energy Fuels. 2009;23:646–52.

    Article  Google Scholar 

  32. Várhegyi G, Till F. Computer processing of thermogravimetric-mass spectrometric and high pressure thermogravimetric data. Part 1. Smoothing and differentiation. Thermochim Acta. 1999;329:141–5.

    Article  Google Scholar 

  33. Yu Y, Fu X, Yu L, Liu R, Cai J. Combustion kinetics of pine sawdust biochar. Data smoothing and isoconversional kinetic analysis. J Therm Anal Calorim. 2016;124:1641–9.

    Article  CAS  Google Scholar 

  34. Francisco-Fernández M, Tarrío-Saavedra J, Naya S, López-Beceiro J, Artiaga R. Classification of wood using differential thermogravimetric analysis. J Therm Anal Calorim. 2015;120:541–51.

    Article  Google Scholar 

  35. Eagle CD Jr. BNALib—A BASIC numerical analysis library for Personal Computers, ©1997–2002 (by C.D. Eagle Jr., Littleton (CO), USA, cdeaglejr@yahoo.com).

  36. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  37. Criado JM. Kinetic analysis of DTG data from master curves. Thermochim Acta. 1978;24:186–9.

    Article  CAS  Google Scholar 

  38. Aboulkas A, El Harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag. 2010;51:1363–9.

    Article  CAS  Google Scholar 

  39. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  40. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Article  Google Scholar 

  41. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  42. Capote JA, Alvear D, Abreu O, Lázaro M, Puente E. Pyrolysis characterization of a lineal low density polyethylene. Fire Saf Sci. 2011;10:877–88.

    Article  Google Scholar 

  43. Rajeshwari P, Dey TK. Advanced isoconversional and master plot analyses on non-isothermal degradation kinetics of AlN (nano)-reinforced HDPE composites. J Therm Anal Calorim. 2016;125:369–86.

    Article  CAS  Google Scholar 

  44. Carrasco F, Pagès P. Thermogravimetric analysis of polystyrene: influence of sample weight and heating rate on thermal and kinetic parameters. J Appl Polym Sci. 1996;61:187–97.

    Article  CAS  Google Scholar 

  45. Stawski D. The effect of sample weight in thermogravimetric analysis of low viscosity polypropylene in air atmosphere. Polym Test. 2009;28:223–5.

    Article  CAS  Google Scholar 

  46. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Ministry of Education, Science and Sport of the Republic of Slovenia through Research Project L2-5465 and the Slovenian Research Agency (ARRS) for financing the Research Program P2-0152. The authors kindly acknowledge Mrs. Špela Božič for performing the TG experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorazd Berčič.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berčič, G., Djinović, P. & Pintar, A. Procedure for generation of catalyst-free PE-TG profiles and its consequence on calculated activation energies. J Therm Anal Calorim 128, 443–456 (2017). https://doi.org/10.1007/s10973-016-5872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5872-1

Keywords

Navigation