Skip to main content
Log in

Effects of atmosphere and stabilizer on the decomposition and crystallization of polyacetylacetonatozirconium

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study fully reports the decomposition of polyacetylacetonatozirconium (PAZ) in air with thermogravimetry–differential scanning calorimetry and Fourier transform infrared spectroscopy. The influence of water vapor on the decomposition of PAZ was characterized with the Fourier transform infrared spectroscopy. Crystallization and phase transformation of PAZ were studied by X-ray diffraction and Raman spectroscopy. The experimental results show that water vapor promotes the decomposition of PAZ and crystallization of zirconia compared with air. Furthermore, the effect of different amount of stabilizer Y(NO3)3·6H2O on the pyrolysis and phase stabilization of PAZ shows that NO3 was beneficial to the oxidation of organic components and the formation of Y2O3 could stabilize tetragonal zirconia and hinder grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Park JS, Kim YB, Shim JH, Kang S, Gür TM, Prinz FB. Evidence of proton transport in atomic layer deposited yttria-stabilized zirconia films. Chem Mater. 2010;22(18):5366–70.

    Article  CAS  Google Scholar 

  2. Ji S, Gu YC, Yu W, Su PC, Min HL, Cha SW. Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate. ACS Appl Mater Interfaces. 2015;7(5):2998–3002.

    Article  CAS  Google Scholar 

  3. Peters C, Weber A, Butz B, Gerthsen D, Ivers-Tiffée E. Grain-size effects in YSZ thin-film electrolytes. J Am Ceram Soc. 2009;92(9):2017–24.

    Article  CAS  Google Scholar 

  4. Vassen R, Cao X, Tietz F, Basu D, Stöver D. Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc. 2004;83(8):2023–8.

    Article  Google Scholar 

  5. Liu HY, Hou XQ, Wang XQ, Wang YL, Dong X, Chen W. Fabrication of high-strength continuous zirconia fibers and their formation mechanism study. J Am Ceram Soc. 2005;87(12):2237–41.

    Article  Google Scholar 

  6. Schlupp MVF, Martynczuk J, Presta M, Gauckler LJ. Precursor decomposition, microstructure, and porosity of yttria stabilized zirconia thin films prepared by aerosol-assisted chemical vapor deposition. Adv Energy Mater. 2013;3(3):375–85.

    Article  CAS  Google Scholar 

  7. Petit S, Morlens S, Yu Z, Luneau D, Pilet G, Soubeyroux J. L. Synthesis and thermal decomposition of a novel zirconium acetato-propionate cluster: [Zr12]. Solid State Sci. 2011;13(3):665–70.

    Article  CAS  Google Scholar 

  8. Mos RB, Nasui M, Petrisor T, Gabor MS, Varga RA, Ciontea L. Synthesis, crystal structure and thermal decomposition of Zr6O4(OH)4(CH3CH2COO)12. J Anal Appl Pyrol. 2012;97(5):137–42.

    Article  CAS  Google Scholar 

  9. Kim JS, Marzouk HA, Reucroft PJ, Robertson JD, Hamrin CE. Fabrication of aluminum oxide thin films by a low-pressure metalorganic chemical vapor deposition technique. Appl Phys Lett. 1993;62(7):681–3.

    Article  CAS  Google Scholar 

  10. Patterson AL. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56(10):978–82.

    Article  CAS  Google Scholar 

  11. Fay RC, Pinnavaia TJ. Infrared and Raman spectra of some six-, seven-, and eight-coordinate acetylacetonato complexes of zirconium(IV) and hafnium(IV). Inorg Chem. 1968;7(3):508–14.

    Article  CAS  Google Scholar 

  12. Liu H, Liu B, Wang X, Zhu L, Feng C, Zhang G. Rheological behavior, molecular structure of precursor and evolution mechanism: zirconia fibers from polyaceticzirconium precursors. J Sol Gel Sci Technol. 2015;76(3):1–10.

    Article  Google Scholar 

  13. Liu PJ, Liu LL, He GQ. Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron. J Therm Anal Calorim. 2016;124(3):1587–93.

    Article  CAS  Google Scholar 

  14. Melnikov P, Nascimento VA, Consolo LZZ, Silva AF. Mechanism of thermal decomposition of yttrium nitrate hexahydrate, Y(NO3)3·6H2O and modeling of intermediate oxynitrates. J Therm Anal Calorim. 2013;111(1):115–9.

    Article  CAS  Google Scholar 

  15. Musić S, Šarić A, Popović S. Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Phys Lett B. 2010;36(3):1117–23.

    Google Scholar 

  16. Henry M, Jolivet JP, Livage J. Aquous chemistry of metal cations hydrolysis, condensation and complexation. Cheminform. 1992;77(4):153–206.

    CAS  Google Scholar 

  17. Mondal A, Ram S. Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor. Ceram Int. 2004;30(2):239–49.

    Article  CAS  Google Scholar 

  18. Geiculescu AC, Spencer HG. Thermal decomposition and crystallization of aqueous sol–gel derived zirconium acetate gels: effects of the additive anions. J Sol Gel Sci Technol. 2000;17(1):25–35.

    Article  CAS  Google Scholar 

  19. Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: lessons learnt and future trends. J Am Ceram Soc. 2009;92(9):1901–20.

    Article  CAS  Google Scholar 

  20. Shukla S, Seal S. Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int Mater Rev. 2005;50(1):45–64.

    Article  CAS  Google Scholar 

  21. Shukla S, Seal S, Vij R, Bandyopadhyay S, Rahman Z. Effect of nanocrystallite morphology on the metastable tetragonal phase stabilization in zirconia. Nano Lett. 2002;2(9):989–93.

    Article  CAS  Google Scholar 

  22. Murase Y, Kato E. Role of water vapor in crystalite growth and tetragonal-monoclinic phase transformation of ZrO2. J Am Ceram Soc. 1983;66(3):196–200.

    Article  CAS  Google Scholar 

  23. Barberis P, Merle-Méjean T, Quintard P. On Raman spectroscopy of zirconium oxide films. J Nucl Mater. 1997;246(246):232–43.

    Article  CAS  Google Scholar 

  24. Álvarez MR, Landa AR, Otero-Díaz LC, Torralvo MJ. Structural and textural study on ZrO2–Y2O3 powders. J Eur Ceram Soc. 1998;18(9):1201–10.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundations of China (Grant Nos. 51372140 and 51472144), the Fundamental Research Funds of Shandong University (Grant No. 2015JC022) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, K., Gan, X., Wang, X. et al. Effects of atmosphere and stabilizer on the decomposition and crystallization of polyacetylacetonatozirconium. J Therm Anal Calorim 127, 1889–1895 (2017). https://doi.org/10.1007/s10973-016-5789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5789-8

Keywords

Navigation