Skip to main content
Log in

An isoperibolic combustion calorimeter developed to measure the enthalpy of combustion of organic compounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An isoperibolic combustion calorimeter developed to measure the enthalpy of combustion of organic compounds containing carbon, hydrogen, oxygen, and nitrogen atoms has been assembled, calibrated, and tested. The calorimeter was calibrated with benzoic acid NIST 39j, and the resulting energy equivalent was ε(calor) = (10116.8 ± 0.5) J K−1. Salicylic acid, 1,2,4-triazole, and acetanilide were used as test compounds. The main result is that all obtained values of the standard molar enthalpy of formation for the test compound are in agreement with the results available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Sunner S. Studied the combustion calorimetry of organic sulfur compounds in moving-bomb calorimetric systems. In: PhD Thesis. Carl Bloms Boktryck- eri, University of Lund, Sweden; 1949.

  2. Hubbard WA, Katz C, Waddington G. A rotating combustion bomb for precision calorimetry. Heats of combustion of some sulfur-containing compounds. J Phys Chem. 1954;581:42–152.

    Google Scholar 

  3. Hubbard WN, Scott DW, Waddington G. Standard states and corrections for combustion in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956. p. 75–128.

    Google Scholar 

  4. Calvet E, Moureu H, Chovin P, Tacholre H. Mlcrotrambe calorimetrique adaptable au microcalorlmetre type E-Calvet. J Chim Phys. 1960;57:593–6.

    CAS  Google Scholar 

  5. Parker W, Steele WV, Stirling W, Watt I. A high-precision aneroid static-bomb combustion calorimeter for samples of about 20 mg. The standard enthalpy of formation of bicyclo[3.3.3]undecane. J Chem Thermodyn. 1975;7:795–802.

    Article  CAS  Google Scholar 

  6. Sunner S. Basic principles of combustion calorimetry. In: Sunner S, Månsson M, editors. Experimental chemical thermodynamics, vol. 1. Oxford: Pergamon Press; 1979.

    Google Scholar 

  7. Held K, Anderson HL. Application of an adiabatic precision calorimeter in the field of organic reactions. J Thermal Anal. 1997;49:663–70.

    Article  Google Scholar 

  8. Ribeiro da Silva MAV, Monte MJS, Matos AAR. Enthalpies of combustion, vapour pressures, and enthalpies of sublimation of 8-hydroxyquinoline, 5-nitro-8-hydroxyquinoline, and 2-methyl-8-hydroxyquinoline. J Chem Thermodyn. 1988;21:159–66.

    Article  Google Scholar 

  9. Men-Yang Y, Pilcher G, Macnab JI. Standard enthalpies of formation in the crystalline state of aminomethanesulfonic acid, 2-aminoethanesulfonic acid, and the three aminobenzenesulfonic acids. J Chem Thermodyn. 1994;26:787–90.

    Article  Google Scholar 

  10. Diogo LHP, Minas da Piedade ME. A micro-combustion calorimeter suitable for samples of mass 10 to 50 mg. Application to solid compounds of C, H, and O, and of C, H, O, and N. J Chem Thermodyn. 1995;27:197–206.

    Article  CAS  Google Scholar 

  11. Contineanu I, Marchidan DI. The enthalpies of combustion and formation of crystalline l-citrulline. Rev Roum Chim. 1994;12:1391–5.

    Google Scholar 

  12. Torres LA, Péres A, Farfán N, Castillo D, Santillan RL. Rotating-bomb combustion calorimetry and the standard enthalpies of formation of two borinic esters. J Chem Thermodyn. 1994;26:337–43.

    Article  CAS  Google Scholar 

  13. Held K, Anderson HL, Hinz B, Kemmler A. Application of a new type of safety calorimeter. J Therm Anal. 1997;49:1647–52.

    Article  Google Scholar 

  14. Roux MV, Dávalos JZ, Jiménez P, Flores H, Saiz JL, Abboud JLM, Juaristi E. Structural effects on the thermochemical properties of sulfur compounds: I. Enthalpy of combustion, vapour pressures, enthalpy of sublimation, and standard molar enthalpy of formation in the gaseous phase of 1,3-dithiane. J Chem Thermodyn. 1999;31:635–46.

    Article  CAS  Google Scholar 

  15. Xu-wu A, Jun H. Mini-bomb combustion calorimeter. Thermochim Acta. 2000;352–353:273–7.

    Article  Google Scholar 

  16. Dávalos JZ, Roux MV. The desing, construction and testing of a calorimeter suitable for organic compounds containing C, H and O. Meas Sci Technol. 2000;11:1421–5.

    Article  Google Scholar 

  17. Aarón R. An isoperibol micro-bomb combustion calorimeter for measurement of the enthalpy of combustion. Application to the study of fullerene C60. J Chem Thermodyn. 2002;34:1729–43.

    Article  Google Scholar 

  18. Xuwu Y, Sanping C, Shengli G, Huanyong L, Qizhen S. Construction of rotating-bomb combustion calorimeter and measurement of thermal effects. Instrum Sci Technol. 2002;30:311–21.

    Article  Google Scholar 

  19. Ribeiro da Silva MAV, Santos LMNBF, Schöder B, Beyer L. Thermochemical studies of three N-thiocarbamoylbenzamidines. J Chem Thermdyn. 2004;36:555–9.

    Article  CAS  Google Scholar 

  20. Flores H, Mentado J, Amador P, Torres LA, Campos M, Rojas A. Redisigning the rotating-bomb combustion calorimeter. J Chem Thermodyn. 2006;38:756–9.

    Article  CAS  Google Scholar 

  21. Salamon B, Kapala J, Gaune-Escard M. Instrumentation and calibration of the Calvet calorimeter. J Therm Anal Calorim. 2012;108:421–4.

    Article  CAS  Google Scholar 

  22. Mentado J, Mendoza E. Calibration and testing of an isoperibolic micro-combustion calorimeter developed to measure the enthalpy of combustion of organic compounds containing C, H, O and N. J Chem Thermodyn. 2013;59:209–13.

    Article  CAS  Google Scholar 

  23. Sabbah R, Coten M. Utilisation du microcalorimetre CRMT en calorimetrie de combustion. Thermochim Acta. 1981;49:307–17.

    Article  CAS  Google Scholar 

  24. Rojas A, Valdes A. An isoperibol micro-bomb calorimeter for measurement of the enthalpy of combustion of organic compounds. Application to the study of succinic acid and acetanilide. J Chem Thermodyn. 2003;35:1309–19.

    Article  CAS  Google Scholar 

  25. Ribeiro da Silva MAV, Pilcher G, Santos LMNBF, Lima LMSS. Calibration and test of an aneroid mini-bomb combustion calorimeter. J Chem Thermodyn. 2007;39:689–97.

    Article  CAS  Google Scholar 

  26. Sabbah R, Xu-wu A, Chickos JS, Planas Leitao ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:167–204.

    Google Scholar 

  27. Wadsö I. Calculation methods in reaction calorimetry. Sci Tools. 1966;13:33–9.

    Google Scholar 

  28. Good WD, Smith NK. Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane. J Chem Eng Data. 1969;14:102–6.

    Article  CAS  Google Scholar 

  29. Sergey PV. Thermochemistry of amines: strain in six-membered rings from experimental standard molar enthalpies of formation of morpholines and piperazines. J Chem Thermodyn. 1998;30:1069–79.

    Article  Google Scholar 

  30. Patiño R, Torres LA, Campos M. The standard molar enthalpies of formation of 5,10,15,20-tetraphenylporphine and 5,10,15,20-tetrakis(4-methoxyphenyl)porphine by oxygen bomb combustion calorimetry. J Chem Thermodyn. 1999;31:627–34.

    Article  Google Scholar 

  31. Good WD, Lacina JL, Collough JP. Sulfuric acid: heat of formation of aqueous solutions by rotating-bomb calorimetry. J Am Chem Soc. 1960;82:5589–91.

    Article  CAS  Google Scholar 

  32. Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl Chem. 2016;8:265–91.

    Google Scholar 

  33. Parks GS, Light DW. Thermal data on organic compounds. XIII. The heat capacities and entropies of n-tetradecane and the hydroxybenzoic acids. The relative free energies of some benzenoid position isomers. J Am Chem Soc. 1934;56:1511–3.

    Article  CAS  Google Scholar 

  34. Roux MV, Torres LA, Dávalos JZ. 1,2,4-triazole as reference material for combustion calorimetry of N-containing compounds. J Chem Thermodyn. 2001;33:949–57.

    Article  CAS  Google Scholar 

  35. Johnson WH, Prosen EJ. The enthalpies of combustion and formation of ortho- and parafluorobenzoic acid. J Res Nat Bur Stand. 1975;79A:481–6.

    Article  CAS  Google Scholar 

  36. Hamilton WS, Thompson P, Pustejovsky SJ. The enthalpies of combustion and formation of 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline. J Chem Eng Data. 1976;21:428–9.

    Article  CAS  Google Scholar 

  37. Verevkin SP, Welle FM. Thermochemical studies for determination of the standard molar enthalpies of formation of alkyl-substituted furans and some ethers. Struct Chem. 1998;9:215–21.

    Article  CAS  Google Scholar 

  38. Carbajal FG, Rojas A, Cárdenas UE. Estudio termoquímico de hidrocarburos arómaticos. XVIII Congreso Nacional de Termodinámica. 2003:479–88.

  39. Jiménez P, Roux MV, Dávalos JZ, Temprado M, Ribeiro Da Silva MAV, Ribeiro Da Silva MDMC, Amaral LMPF, Cabildo P, Claramunt RM, Mó O, Yáñez M, Elguero J. Substituent and ring effects on enthalpies of formation: 2-methyl- and 2 ethylbenzimidazoles versus benzene- and imidazole-derivatives. Mol Phys. 2004;102:711–21.

    Article  Google Scholar 

  40. Matos M, Morais VMF, Ribeiro Da Silva MDMC, Marques MCF, Sousa EA, Castiñeiras JP, Santos CP, Acree WE. Thermochemical and theoretical studies of dimethylpyridine-2,6-dicarboxylate and pyridine-2,3-, pyridine-2,5-, and pyridine-2,6-dicarboxylic acids. J Chem Eng Data. 2005;50:1184–91.

    Article  CAS  Google Scholar 

  41. Lukyanova VA, Papina TS, Didenko KV, Alikhanyan AS. The standard enthalpy of formation of silver pivalate. J Therm Anal Calorim. 2008;92:743–6.

    Article  CAS  Google Scholar 

  42. Flores H, Amador P. Standard molar enthalpies of formation of crystalline stereoisomers of aldono-1,4-lactones. J Chem Thermodyn. 2004;36:1019–24.

    Article  CAS  Google Scholar 

  43. Ribeiro Da Silva MAV, Lobo Ferreira AIMC, Barros ALM, Bessa ARC, Brito BCSA, Vieira JAS, Martins SAP. Standard molar enthalpies of formation of 1- and 2-cyanonaphthalene. J Chem Thermodyn. 2011;43:1306–14.

    Article  CAS  Google Scholar 

  44. Verevkin SP, Emel’yanenco VN, Pimerzin AA, Vishnevskaya EE. Thermodynamic analysis of strain in heteroatom derivatives of indene. J Phys Chem A. 2011;115:12271–9.

    Article  CAS  Google Scholar 

  45. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data. 1982;11(Suppl):2.

    Google Scholar 

  46. Cox JD, Wagman DD, Medvedev VA. CODATA Key values for thermodynamics. New York: Hemisphere; 1989.

    Google Scholar 

  47. Olofsson G. In: Sunner S, Månsson M, editors. Combustion calorimetry, vol. 6. Oxford: Pergamon; 1979. p. 1–24.

    Google Scholar 

  48. Vanderzee CE, Månsson M, Sunner S. The energy of combustion of succinic acid. J Chem Thermodyn. 1972;4:533–40.

    Article  CAS  Google Scholar 

  49. Wong SWS, Westrum EF Jr. Enthalpies of formation of globular molecules. II. Three bicyclooctanes. J Am Chem Soc. 1971;93:5317–21.

    Article  CAS  Google Scholar 

  50. Wilhoit RC, Shiao D. Thermochemistry of biologically important compounds: heats of combustion of solid organic acids. J Chem Eng Data. 1964;9:595–9.

    Article  CAS  Google Scholar 

  51. Bills JL, Cotton FA. The enthalpy of formation of tetraethylgermane and the germanium–carbon bond energy. J Phys Chem. 1964;68:806–10.

    Article  CAS  Google Scholar 

  52. Good WD, Douslin DR, Scott DW, George A, Lacina JL, Dawson JP, Waddington G. Thermochemistry and vapor pressure of aliphatic fluorocarbons. A comparison of the C–F and C–H thermochemical bond energies. J Phys Chem. 1959;63:1133–8.

    Article  CAS  Google Scholar 

  53. Cass RC, Springall HD, Quincey PG. Heats of combustion and molecular structure. Part III. Diphenylene. J Chem Soc. 1955:1188–90.

  54. Pilcher G, Sutton L. A new high precision calorimeter for the measurement of heats of combustion: and the heat of combustion of succinic acid. Phil. Trans. R. Soc. Lond. 1955;248:23–44.

    Article  Google Scholar 

  55. Huffman HM. Thermal data. IX. The heats of combustion of hippuric and succinic acids and a proposal for the use of hippuric acid as a secondary standard in combustion calorimetry. J Am Chem Soc. 1938;60:1171–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Universidad del Mar for financial support through the project CUP 2II1401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Mentado-Morales.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mentado-Morales, J., Hernández-Sánchez, E., Regalado-Méndez, A. et al. An isoperibolic combustion calorimeter developed to measure the enthalpy of combustion of organic compounds. J Therm Anal Calorim 127, 2307–2314 (2017). https://doi.org/10.1007/s10973-016-5758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5758-2

Keywords

Navigation