Skip to main content
Log in

Effect of fast neutrons on the structure and thermal properties of PVA/HPMC blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Blends of PVA/HPMC of different mass percents are prepared using solution casting method and are subjected to fast neutron irradiation of fluence 1 × 107 n cm−2. Structural configuration of the blends as well as thermal properties is studied using X-ray diffraction (XRD) and thermal analyses (differential scanning calorimetry and thermal gravimetric analysis) to reveal the miscibility map and to characterize the structural properties of the blend system. The data obtained from the X-ray diffraction patterns show broadening and sharpening of peaks at different HPMC concentrations with PVA as well as by irradiation with fast neutrons. Thermal analyses show variations in the first-order thermodynamic transition temperature, the melting temperature, shape and area of thermal peaks which are attributed to the different degrees of crystallinity and the existence of polymer–polymer interactions between PVA and HPMC molecules. The data explain the possibility of miscibility existence between the amorphous components of the two homopolymers PVA and HPMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Çaykara T, Demirci S. Preparation and characterization of blend films of poly(vinyl alcohol) and sodium alginate. J Macromol Sci Pure Appl Chem. 2006;43:1113–21.

    Article  Google Scholar 

  2. Kulkarni RV, Sa B. Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioact Compat Polym. 2009;24:368–84.

    Article  CAS  Google Scholar 

  3. Folkes MJ, Hope PS. Polymer blends and alloys. London: Chapman and Hall; 1993.

    Book  Google Scholar 

  4. Osiris WG, Moselhey MTH. Optical study of poly(vinyl alcohol)/hydroxypropyl methylcellulose blends. J Mater Sci. 2011;46:5775–89.

    Article  Google Scholar 

  5. Sakellariou P, Hassan A, Rowe RC. Phase separation and polymer interactions in aqueous poly(vinyl alcohol)/hydroxypropyl methylcellulose blends. Polymer. 1993;34:1240–8.

    Article  CAS  Google Scholar 

  6. Suksaeree J, Luprasong C, Monton C, Charoenchai L, Pichayakorn W. An eco-friendly synthesis of modified poly(vinyl alcohol)–graftlactic acid by curing method. Thermal analysis and characterization. J Therm Anal Calorim. 2015;120:929–36.

    Article  CAS  Google Scholar 

  7. Mallakpour S, Dinari M, Hatami M. Novel nanocomposites of poly(vinyl alcohol) and Mg–Al layered double hydroxide intercalated with diacid N-tetrabromophthaloyl-aspartic. J Therm Anal Calorim. 2015;120:1293–302.

    Article  CAS  Google Scholar 

  8. Taghizadeh MT, Yeganeh N, Rezaei M. Kinetic analysis of the complex process of poly(vinyl alcohol) pyrolysis using a new coupled peak deconvolution method. J Therm Anal Calorim. 2014;118:1733–46.

    Article  CAS  Google Scholar 

  9. Masson J, Manley RS. Miscible blends of cellulose and poly(vinylpyrrolidone). Macromolecules. 1991;24:6670–9.

    Article  CAS  Google Scholar 

  10. Nishioka N, Yamamoka M, Haneda H, Kawakami K, Uno M. Thermal decomposition of cellulose/synthetic polymer blends containing grafted products. 1. Cellulose/poly(methyl methacrylate) blends. Macromolecules. 1993;26:4694–9.

    Article  CAS  Google Scholar 

  11. Nisko Y, Suziki H, Sato K. Molecular orientation and optical anisotropy induced by the stretching of poly(vinyl alcohol)poly(N-vinyl pyrrolidone) blends. Polymer. 1994;35:1452–61.

    Article  Google Scholar 

  12. Oliveira MER, Santos LDM, da Silva MLDG, da Cunha HN, da Silva Filho EC, da Silva Leite CM. Preparation and characterization of composite polyaniline/poly(vinyl alcohol)/palygorskite. J Therm Anal Calorim. 2015;119:37–46.

    Article  CAS  Google Scholar 

  13. Hofenk-de Graaff J. Central research laboratory for objects of art and science. Gabriel Metsustroat and 1071 EA: Amsterdam, The Netherlands; 1981.

  14. Melero A, Garrigues TM, Almudever P, Villodre AM, Lehr CM, Schafer U. Nortriptyline hydrochloride skin absorption: development of a transdermal patch. Eur J Pharm Biopharm. 2008;69:588–96.

    Article  CAS  Google Scholar 

  15. Almeida EP, Costa AA, Serafini MR, Rossetti FC, Marchetti JM, Sarmento VHV, Nunes RS, Valerio MEG, Araújo AAS, Lira AAM. Preparation and characterization of chloroaluminum phthalocyanine-loaded solid lipid nanoparticles by thermal analysis and powder X-ray diffraction techniques. J Therm Anal Calorim. 2012;108:191–6.

    Article  CAS  Google Scholar 

  16. Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA. Pharmaceutical significance of cellulose: a review. Express Polym Lett. 2008;2:758–78.

    Article  CAS  Google Scholar 

  17. Lee C-Y, Chen G-L, Sheu M-T, Liu C-H. Drug release from hydroxypropyl cellulose and polyethylene oxide capsules: in vitro and in vivo assessment. Chin Pharm J. 2006;58:57–65.

    CAS  Google Scholar 

  18. Porfírio LDO, Costa AA, Conceição RR, Matos TDO, Almeida EDP, Sarmento VHV, Araújo AAS, Nunes RDS, Lira AAM. Compatibility study of hydroxypropylmethylcellulose films containing zidovudine and lamivudine using thermal analysis and infrared spectroscopy. J Therm Anal Calorim. 2015;120:817–28.

    Article  Google Scholar 

  19. Bodugoz-Senturka H, Choi J, Oral E, Kung JH, Macias CE, Braithwaite G, Muratoglu OK. The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing. Biomaterials. 2008;29:141–9.

    Article  Google Scholar 

  20. Abd El-Kader FH, Gaafer SA, Abd El-Kader MFH. Characterization and optical studies of 90/10 (wt/wt%) PVA/b-chitin blend irradiated with γ-rays. Spectrochim Acta A Mol Biomol Spectrosc. 2014;131:564–70.

    Article  CAS  Google Scholar 

  21. Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S. Effect of γ-radiation on the structure and morphology of polyvinyl alcohol films. Nucl Instrum Methods Phys Res B. 2005;237:585–99.

    Article  CAS  Google Scholar 

  22. Wang B, Kodama M, Mukataka S, Kokufuta E. On the intermolecular cross-linking of PVA chains in an aqueous solution by γ-ray irradiation. Polym Gels Netw. 1998;6:71–81.

    Article  CAS  Google Scholar 

  23. Abdel Zaher NA, Osiris WG. Optical studies of fast neutron irradiated composites of poly(vinyl alcohol) and bovine serum albumin. Mater Sci (Indian J). 2012;8:370–82.

    CAS  Google Scholar 

  24. Sebaa M, Servens C, Pouyet J. Natural and artificial weathering of low-density polyethylene (LDPE): calorimetric analysis. J Appl Polym Sci. 1993;47:1897–903.

    Article  CAS  Google Scholar 

  25. Abo-Ellil MS, Gaafar SA, Abd El-Kader FH, Kamel NA. Effect of fast neutrons on dielectric properties of pure and gelatin doped-poly(vinyl alcohol) films. J Polym Res. 2000;7:149–53.

    Article  CAS  Google Scholar 

  26. Nalle S, Sarpate R, Setty M, et al. Controlled release nateglinide tablets using Na-CMC and HPMC hydrophilic polymer. Res J Pharm Technol. 2010;3:87–91.

    CAS  Google Scholar 

  27. El-Zaher NA, Osiris WG. Thermal and structural properties of poly(vinyl alcohol) doped with hydroxypropyl cellulose. J Appl Polym Sci. 2005;96:1914–23.

    Article  CAS  Google Scholar 

  28. Segal L, Creely IJ, Martin AE Jr, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J. 1959;29:786–94.

    Article  CAS  Google Scholar 

  29. Kim JH, Kim JY, Lee YM, Kim KY. Properties and swelling characteristics of cross-linked poly(vinyl alcohol)/chitosan blend membrane. J Appl Polym Sci. 1992;45:1711–7.

    Article  CAS  Google Scholar 

  30. Cho YW, Hon SS, Ko SW. PVA containing chito-oligosaccharide side chain. Polymer. 2000;41:2033–9.

    Article  CAS  Google Scholar 

  31. Cheung YW, Guest MJ. A study of the blending of ethylene–styrene copolymers differing in the copolymer styrene content: miscibility considerations. J Polym Sci Part B Polym Phys. 2000;38:2976–87.

    Article  CAS  Google Scholar 

  32. Osiris WG, Moselhey MTH. Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci. 2012;4:57–67.

    Google Scholar 

  33. Zhang SH, Painter PC, Runt J. Dynamics of polymer blends with intermolecular hydrogen bonding: broad-band dielectric study of blends of poly(4-vinyl phenol) with poly(vinyl acetate) and EVA70. Macromolecules. 2002;35:8478–87.

    Article  CAS  Google Scholar 

  34. Samal SK, Fernandes EG, Chiellini F, Chiellini E. Thermal analysis of PVA/CNTs 2D membrane. J Therm Anal Calorim. 2009;97:859–64.

    Article  CAS  Google Scholar 

  35. Kong Y, Hay JN. The measurement of the crystallinity of polymers by DSC. Polymer. 2002;43:3873–8.

    Article  CAS  Google Scholar 

  36. Vijaya Kumar Naidu B, Bhat SD, Sairam M, Wali AC, Sawant DP, Halligudi SB, Mallikarjuna NN, Aminabhavi TM. Comparison of the pervaporation separation of a water–acetonitrile mixture with zeolite-filled sodium alginate and poly(vinyl alcohol)–polyaniline semi-interpenetrating polymer network membranes. J Appl Polym Sci. 2005;96:1968–78.

    Article  Google Scholar 

  37. Peppas NA, Merrill EW. Differential scanning calorimetry of crystalline PVA hydrogels. J Appl Polym Sci. 1976;20:1457–65.

    Article  CAS  Google Scholar 

  38. Rachocki A, Kowalczuck J, Tritt-Goe J. How we can interpret the T1 dispersion of MC, HPMC and HPC polymers above glass temperature? Solid State Nucl Mag. 2006;30:192–7.

    Article  CAS  Google Scholar 

  39. Ciemniecki SL, Glasser WG. Multiphase materials with lignin: 1. Blends of hydroxypropyl lignin with poly(methyl methacrylate). Polymer. 1988;29:1021–9.

    Article  CAS  Google Scholar 

  40. Guan J, Chen G. Copolymerization modification of silk fabric with organophosphorous flame retardant. Fire Mater. 2010;37:261–70.

    Google Scholar 

  41. Gireco R. Polymer blends and mixtures. In: Walsh DJ, Higgins JS, MacOnnachie A, editors. NATOASI series E, Applied science, vol. 89. The Hague: Nijhoff; 1985.

    Google Scholar 

  42. Hammel R, MacKnight WJ, Karasz FE. Structure and properties of the system: poly(2,6-dimethyl-phenylene oxide) isotactic polystyrene. Wide-angle X-ray studies. J Appl Phys. 1975;46:4199–203.

    Article  CAS  Google Scholar 

  43. Wenig W, Karasz FE, MacKnight WJ. Structure and properties of the system: poly(2,6-dimethylphenylene oxide) isotactic polystyrene. Small angle X-ray studies. J Appl Phys. 1975;46:4194–8.

    Article  CAS  Google Scholar 

  44. Chiu J. Applications of thermogravimetry to the study of high polymers. Appl Polym Symp. 1966;2:25–43.

    Google Scholar 

  45. Gullis CF, Hirshler MM. In the combustion of organic polymers. Oxford: Claredon; 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osiris W. Guirguis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Zaher, N.A., Moselhey, M.T.H. & Guirguis, O.W. Effect of fast neutrons on the structure and thermal properties of PVA/HPMC blends. J Therm Anal Calorim 126, 1289–1299 (2016). https://doi.org/10.1007/s10973-016-5675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5675-4

Keywords

Navigation