Skip to main content
Log in

Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study comes to complete the initial investigation of the liquid crystalline properties of 4-[(4-chlorobenzyl)oxy]-3,4′-dichloroazobenzene (CODA). Here, the thermal analysis of CODA dye was performed in air flow and nitrogen flow atmospheres by means of simultaneous thermogravimetry TG, derivative thermogravimetry DTG, differential thermal analysis DTA and differential scanning calorimetry DSC; differences between the two steps of the thermal degradation of CODA related to the two experimental atmospheres were observed. Drops cast and spin coating techniques were used for nanostructuring CODA on platinum (Pt) substrates; the deposited materials were characterised by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Exotic crystalline nanowires of CODA were obtained as function of used deposition technique, while the deposition time decisively influenced their features. The present results advocate for employing these materials as template matrices for producing high-aspect-ratio inorganic nanomaterials (i.e. Au) in the form of nanotubes, nanowires, nanorods or nanoparticles with enhanced functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu M, Cunningham BT, Park SJ, Eden JG. Vertically emitting, dye-doped polymer laser in the green (lambda similar to 536 nm) with a second order distributed feedback grating fabricated by replica molding. Opt Commun. 2008;281:3159–62.

    Article  CAS  Google Scholar 

  2. He BQ, Liao Q, Huang Y. Random lasing in a dye doped cholesteric liquid crystal polymer solution. Opt Mater. 2008;31:375–9.

    Article  CAS  Google Scholar 

  3. Fukuda M, Kodama K, Yamamoto H, Mito K. Evaluation of new organic pigments as laser-active media for solid-state dye laser. Dyes Pigments. 2004;63:115–25.

    Article  CAS  Google Scholar 

  4. Eida M, Kuma H, Hosokawa C. Organic electroluminescent display and its production method. US Patent US20060012296 A1 2006.

  5. Microyannidis JA, Tsagkournos DV, Sharma SS, Kumar A, Vijay YK, Sharma GD. Efficient bulk heterojunction solar cells based on low band gap bisazo dyes containing anthracene and/or pyrrole units. Solar Energy Mater Solar Cells. 2010;94:2318–27.

    Article  Google Scholar 

  6. Yamaguchi T, Tobe N, Matsumoto D, Arakawa H. Highly efficient plastic substrate dye-sensitized solar cell using a compression method for preparation of TiO2 photoelectrodes. Chem Commun. 2007;45:4767–9.

    Article  Google Scholar 

  7. Xu GR, Zhang YP, Li GB. Degradation of azo dye active brilliant red X-3B by composite ferrate solution. J Hazard Mater. 2009;161:1299–305.

    Article  CAS  Google Scholar 

  8. Tucker JF. Sunglass lens laminate. US Patent US6102539 A 2000.

  9. Holme I. Recent developments in colorants for textile applications. Surf Coat Int B Coat Trans. 2002;85:243–64.

    Article  CAS  Google Scholar 

  10. Abel AG. Pigments for paint. In: Lambourne R, Strivens TA, editors. Paint and surface coatings: theory and practice. Cambridge: Woodhead Publishing Cambridge; 1999. p. 91–165.

    Chapter  Google Scholar 

  11. Karci F, Sener N, Yamac M, Sener I, Demircali A. The synthesis, antimicrobial activity and absorption characteristics of some novel heterocyclic disazo dyes. Dyes Pigments. 2009;80:47–52.

    Article  CAS  Google Scholar 

  12. Ozturk A, Abdullah MI. Toxicological effect of indole and its azo dye derivatives on some microorganisms under aerobic conditions. Sci Total Environ. 2006;358:137–42.

    Article  Google Scholar 

  13. Liu S, Ma J, Zhao D. Synthesis and characterization of cationic monoazo dyes in corporating quaternary ammonium salts. Dyes Pigments. 2007;75:255–62.

    Article  CAS  Google Scholar 

  14. Seferoglu Z, Ertan N, Yilmaz E, Uraz G. Synthesis, spectral characterisation and antimicrobial activity of new disazo dyes derived from heterocyclic coupling components. Coloration Technol. 2008;124:27–35.

    Article  CAS  Google Scholar 

  15. Barbera J, Giorgini L, Paris F, Salatelli E, Tejedor RM, Angiolini L. Supramolecular chirality and reversible chiroptical switching in new chiral liquid-crystal azopolymers. Chem Eur J. 2008;14(35):11209–21.

    Article  CAS  Google Scholar 

  16. White DL, Taylor GN. New absorptive mode reflective liquid-crystal display device. J Appl Phys. 1974;45:4718.

    Article  CAS  Google Scholar 

  17. Benmouna R, Benyoucef B. Thermophysical and thermomechanical properties of Norland Optical Adhesives and liquid crystal composites. J Appl Polym Sci. 2008;108(6):4072–9.

    Article  CAS  Google Scholar 

  18. Radu S, Sarpe-Tudoran C, Jianu A, Rau G. Aromatic azomonoethers as new organic materials for nonlinear optics. Rev Roum Chim. 1998;43:735–9.

    CAS  Google Scholar 

  19. Akiyama H, Kawara T, Takada H, Takatsu H, Chigrinov V, Prudnikova E, Kozenkov V, Kwok H. Synthesis and properties of azo dye aligning layers for liquid crystal cells. Liq Cryst. 2002;29:1321–7.

    Article  Google Scholar 

  20. Moanta A, Rau G, Radu S. Studiul proprietăţilor spectrale şi determinarea activităţii biologice pentru o serie de 4-[(4-clorobenzil)oxi]-azobenzeni. Rev Chim (Bucureşti). 2007;58:229–31.

    CAS  Google Scholar 

  21. Moanta A, Ionescu C, Rotaru P, Socaciu M, Harabor A. Structural characterization, thermal investigation, and liquid crystalline behavior of 4-[(4-chlorobenzyl) oxy]-3, 4′-dichloroazobenzene. J Therm Anal Calorim. 2010;102:1079–86.

    Article  CAS  Google Scholar 

  22. Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. Fast liquid-crystal elastomer swims into the dark. Nat Mater. 2004;3:307–10.

    Article  CAS  Google Scholar 

  23. Jelinek M, Kocourek T, Remsa J, Cristescu R, Mihailescu IN, Chrisey DB. MAPLE applications in studying organic thin films. Laser Phys. 2007;17:66–70.

    Article  CAS  Google Scholar 

  24. Rotaru A, Constantinescu C, Rotaru P, Moanţă A, Dumitru M, Socaciu M, Dinescu M, Segal E. Thermal analysis and thin films deposition by matrix assisted pulsed laser evaporation of a 4CN type azomonoether. J Therm Anal Calorim. 2008;92:279–84.

    Article  CAS  Google Scholar 

  25. Matei A, Constantinescu C, Mitu B, Filipescu M, Ion V, Ionita I, Brajnicov S, Alloncle AP, Delaporte P, Emandi A, Dinescu M. Laser printing of azo-derivative thin films for non-linear optical applications. Appl Surf Sci. 2015;336:200–5.

    Article  CAS  Google Scholar 

  26. Constantinescu C, Matei A, Ionita I, Ion V, Marascu V, Dinescu M, Vasiliu C, Emandi A. Azo-derivatives thin films grown by matrix-assisted pulsed laser evaporation for non-linear optical applications. Appl Surf Sci. 2013;302:69–73.

    Article  Google Scholar 

  27. Constantinescu C, Emandi A, Vasiliu C, Negrila C, Logofatu C, Cotarlan C, Lazarescu M. Thin films of Cu(II)-o, o′-dihydroxy azobenzene nanoparticle-embedded polyacrylic acid (PAA) for nonlinear optical applications developed by matrix assisted pulsed laser evaporation (MAPLE). Appl Surf Sci. 2009;255:5480–5.

    Article  CAS  Google Scholar 

  28. Constantinescu C, Morintale E, Emandi A, Dinescu M, Rotaru P. Thin films of Cu(II)-o, o′-dihydroxy azobenzene nanoparticle-embedded polyacrylic acid (PAA) for nonlinear optical applications developed by matrix assisted pulsed laser evaporation (MAPLE). Appl Surf Sci. 2009;255:5480–5.

    Article  CAS  Google Scholar 

  29. Prasad LG. Azo dye doped polymer films for nonlinear optical applications. Chin J Polym Sci. 2014;32:650–7.

    Article  Google Scholar 

  30. Chaplanova ZD, Muranski AA, Rogachev AA, Agabekov VE, Gracheva EA. Multi-layered anisotropic films based on the azo dye brilliant yellow and organic polymers. J Appl Spectrosc. 2013;80:658–62.

    Article  CAS  Google Scholar 

  31. Rivera E, del Pilar Carreon-Castro M, Rodriguez L, Cedillo G, Fomine S, Morales-Saavedra OG. Amphiphilic azo-dyes (RED-PEGM) part 2: charge transfer complexes, preparation of Langmuir–Blodgett films and optical properties. Dyes Pigments. 2007;74:396–403.

    Article  CAS  Google Scholar 

  32. Dobbelin M, Ciesielski A, Haar S, Osella S, Bruna M, Minoia A, Grisanti L, Mosciatti T, Richard F, Prasetyanto FA, De Cola L, Palermo V, Mazzaro R, Morandi V, Lazzaroni R, Ferrari AC, Beljonne D, Samori P. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites. Nat Commun. 2016;. doi:10.1038/ncomms11090.

    Google Scholar 

  33. Briseno AL, Mannsfled SCB, Formo E, Xiong Y, Lu X, Bao Z, Jenekhe SA, Xia Y. Adding new functions to organic semiconductor nanowires by assembling metal nanoparticles onto their surfaces. J Mater Chem. 2008;18:5395–8.

    Article  CAS  Google Scholar 

  34. Mizuguchi J. Correlation between crystal and electronic structures in diketopyrrolopyrrole pigments as viewed from exciton coupling effects. J Phys Chem A. 2000;104:1817–21.

    Article  CAS  Google Scholar 

  35. Hoki T, Takahashi H, Suzuki S, Mizuguchi J. Hydrogen gas sensor based upon proton acceptors integrated in copper-tetra-2, 3-pyridinoporphyradine. IEEE Sensors J. 2007;7:808–13.

    Article  CAS  Google Scholar 

  36. Beyerlein T, Tieke B, Forero-Lenger S, Brutting W. Red electroluminescence from a 1, 4-diketopyrrolo[3, 4-c]pyrrole (DPP)-based conjugated polymer. Synth Metals. 2002;130:115–9.

    Article  CAS  Google Scholar 

  37. Potrawa T, Langhals H. Fluorescent dyes with large stokes shifts-soluble dihydropyrrolopyrrolediones. Chem Berichte. 1987;120:1075–8.

    Article  CAS  Google Scholar 

  38. Lunak S, Vynuchal J, Vala M, Havel L, Hrdina R. The synthesis, absorption and fluorescence of polar diketo-pyrrolo-pyrroles. Dyes Pigments. 2009;82:102–8.

    Article  CAS  Google Scholar 

  39. David J, Weiter M, Vala M, Vynuchal J, Kucerik J. Stability and structural aspects of diketopyrrolopyrrole pigment and its N-alkyl derivatives. Dyes Pigments. 2011;89:137–43.

    Article  CAS  Google Scholar 

  40. Vala M, Vynuchal J, Toman P, Weiter M, Lunak S Jr. Novel, soluble diphenyl-diketo-pyrrolopyrroles: experimental and theoretical study. Dyes Pigments. 2010;84:176–82.

    Article  CAS  Google Scholar 

  41. Weiter M, Salyk O, Bednar P, Vala M, Navratil J, Zmeskal O, Vynuchal J, Lunak S Jr. Morphology and properties of thin films of diketopyrrolopyrrole derivatives. Mat Sci Eng B. 2009;165:148–52.

    Article  CAS  Google Scholar 

  42. Vala M, Weiter M, Vynuchal J, Toman P, Lunak S Jr. Comparative studies of diphenyl-diketo-pyrrolopyrrole derivatives for electroluminiscence applications. J Fluoresc. 2008;18:1181–5.

    Article  CAS  Google Scholar 

  43. Kucerik J, David J, Weiter M, Vala M, Vynuchal J, Ouzzane I, Salyk O. Stability and physical structure test of piperidyl and morpholinyl derivatives of diphenyl-diketo-pyrrolopyrroles (DPP). J Therm Anal Calorim. 2012;108:467–73.

    Article  CAS  Google Scholar 

  44. Pham VP, Galstyan T, Granger A, Lessard RA. Azo dye-doped poly(methyl methacrylate) films as optical data storage media. Jpn J Appl Phys. 1997;36:429.

    Article  CAS  Google Scholar 

  45. Natansohn A, Rochon P, Gosselin J, Xie S. Azo polymers for reversible optical storage. 1. Poly [4′-[[2-(acryloyloxy) ethyl] ethylamino]-4-nitroazobenzene]. Macromolecules. 1992;25:2268–73.

    Article  CAS  Google Scholar 

  46. Ho M-S, Natanshon A, Rochon P. Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups. Macromolecules. 1995;28:6124–7.

    Article  CAS  Google Scholar 

  47. IUPAC. Compendium of chemical terminology. 2nd ed. (the “Gold Book”) (1997). Online corrected version: 2009.

  48. Rotaru A, Brătulescu G, Rotaru P. Thermal analysis of azoic dyes; part I. Non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489:63–9.

    Article  CAS  Google Scholar 

  49. Rotaru A, Constantinescu C, Mandruleanu A, Rotaru P, Moldovan A, Gyoryova K, Dinescu M, Balek V. Thermochim Acta. 2010;498:81–91.

    Article  CAS  Google Scholar 

  50. Ahlstrom LH, Sparr Eskilsson C, Bjorklund E. Determination of banned azo dyes in consumer goods. Trends Anal Chem. 2005;24:49–56.

    Article  CAS  Google Scholar 

  51. Golka K, Kopps S, Myslak ZW. Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett. 2004;151:203–10.

    Article  CAS  Google Scholar 

  52. Puntener A, Page C. European Ban on certain azo dyes. Quality Environ. 2004;1–3.

  53. Gur M, Kocaokutgen H, Tas M. Synthesis, spectral, and thermal characterisations of some azo-ester derivatives containing a 4-acryloyloxy group. Dyes Pigments. 2007;72(1):101–8.

    Article  Google Scholar 

  54. Badea M, Emandi A, Marinescu D, Cristurean E, Olar R, Braileanu A, Budrugeac P, Segal E. Thermal stability of some azo-derivatives and their complexes—1-(2-benzothiazolyl)-3-methyl-4-azo-pyrazil-5-one derivatives and their Cu(II) complexes. J Therm Anal Cal. 2003;72(2):525–31.

    Article  CAS  Google Scholar 

  55. Dincalp H, Toker F, Durucasu J, Avcibasi N, Icli S. New thiophene-based azo ligands containing azo methine group in the main chain for the determination of copper(II) ions. Dyes Pigments. 2007;75(1):11–24.

    Article  CAS  Google Scholar 

  56. Chen Z, Wu Y, Gu D, Gan F. Nickel(II) and copper(II) complexes containing 2-(2-(5-substitued isoxazol-3-yl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione ligands: synthesis, spectral and thermal characterizations. Dyes Pigments. 2008;76(3):624–31.

    Article  CAS  Google Scholar 

  57. Rotaru A, Moanţă A, Sălăgeanu I, Budrugeac P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part I. Decomposition of 4-[(4-chlorobenzyl)oxy]-4′-nitro-azobenzene. J Therm Anal Cal. 2007;87(2):395–400.

    Article  CAS  Google Scholar 

  58. Rotaru A, Kropidłowska A, Moanţă A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part II. Non-isothermal study of three liquid crystals in dynamic air atmosphere. J Therm Anal Cal. 2008;92(1):233–8.

    Article  CAS  Google Scholar 

  59. Rotaru A, Moanţă A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part III. Non-isothermal study of 4-[(4-chlorobenzyl)oxy]-4′-chloro-azobenzene in dynamic air atmosphere. J Therm Anal Cal. 2009;95(1):161–6.

    Article  CAS  Google Scholar 

  60. Rotaru A, Moanţă A, Popa G, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part IV. Non-isothermal kinetics of 2-allyl-4-((4-(4-methylbenzyloxy) phenyl)diazenyl) phenol in dynamic air atmosphere. J Therm Anal Cal. 2009;97(2):485–91.

    Article  CAS  Google Scholar 

  61. Rotaru A, Jurca B, Moanţă A, Sălăgeanu I, Segal E. Kinetic study of thermal decomposition of some aromatic ortho-chlorinated azomonoethers. 1. Decomposition of 4[(2-chlorobenzyl)oxi]-4′-trifluoromethyl-azobenzene. Rev Roum Chim. 2006;51(5):373–8.

    CAS  Google Scholar 

  62. Vala M, Weiter M, Heinrichova P, Sedina M, Ouzzane I, Moziskova P. Tailoring of molecular materials for organic electronics. J Biochem Tech. 2010;2:S44–5.

    Google Scholar 

  63. Zhang C, Yan Y, Zhao YS, Yao J. Synthesis and applications of organic nanorods, nanowires and nanotubes. Annu Rep Prog Chem Sect C: Phys Chem. 2013;109:211–39.

    Article  CAS  Google Scholar 

  64. Garcia-Frutos EM. Small organic single-crystalline one-dimensional micro- and nanostructures for miniaturized devices. J Mater Chem C. 2013;1:3633–45.

    Article  CAS  Google Scholar 

  65. Robello DR. Linear polymers for nonlinear optics. I Polyacrylates bearing aminoitro-stilbene and—azobenzene dyes. J Polym Sci, Part A: Polym Chem. 1990;28:1–13.

    Article  CAS  Google Scholar 

  66. Campbell D, Dix LR, Rostron P. Liquid crystalline behaviour of azobenzene dyes. Dyes Pigments. 1995;29:77–83.

    Article  CAS  Google Scholar 

  67. Ozdilek C, Toppare L, Yagci Y, Hacaloglu J. Characterization of polypyrrole/polytetrahydrofuran graft copolymers by direct pyrolysis mass spectrometry. J Anal Appl Pyrol. 2002;64:363–78.

    Article  CAS  Google Scholar 

  68. Gilland JC, Lewis JS. Mass-spectroscopy of 4-amino-4′nitro-azobenzene compounds. Org Mass Spectrom. 1974;9:1148–53.

    Article  CAS  Google Scholar 

  69. Messmer K, Nuyken O. Mass spectroscopic investigation of azo-compounds. 1. Org Mass Spectrom. 1977;12:100–5.

    Article  CAS  Google Scholar 

  70. Radu S. Electron impact mass spectrometry of aromatic azoe thers. Eur Mass Spectrom. 1995;1:561–72.

    Article  CAS  Google Scholar 

  71. Moanta A, Radu S. New phenoxyacetic acid analogues with antimicrobial activity. Rev Chim. 2008;59:708–11.

    CAS  Google Scholar 

  72. Moanta A, Radu S. Spectroscopic analysis and antimicrobial activity of some 4-phenylazo-phenoxyacetic acids. Rev Roum Chim. 2009;54:151–6.

    CAS  Google Scholar 

  73. Bratulescu G. Mass spectra of aromatic azoethers and azoxyethers. Rev Roum Chim. 2000;45:277–83.

    CAS  Google Scholar 

  74. Korolev VA, Nefedov OM. matrix infrared spectroscopy of intermediates with low coordinated carbon, silicon and germanium atoms. In: Bethell R, editor. Advances in physical organic chemistry. London: Academic Press, Harcourt Brace & Company; 1995.

    Google Scholar 

  75. Bognitzki M, Becker M, Graeser M, Massa W, Wendorff JH, Schaper A, Weber D, Beyer A, Golzhauser A, Greiner A. Preparation of sub-micrometer copper fibers via electrospinning. Adv Mater. 2006;18:2384–6.

    Article  CAS  Google Scholar 

  76. Abel B, Coskun S, Mohammed M, Williams R, Unalan HE, Aslan K. Metal-enhanced fluorescence from silver nanowires with high aspect ratio on glass slides for biosensing applications. J Phys Chem C. 2015;119:675–84.

    Article  CAS  Google Scholar 

  77. Gries K, Vieker H, Golzhauser A, Agarwal S, Greiner A. Preparation of continuous gold nanowires by electrospinning of high-concentration aqueous dispersions of gold nanoparticles. Small. 2012;8:1436–41.

    Article  CAS  Google Scholar 

  78. Karusso RA, Schattka JH, Greiner A. Titanium dioxide tubes from sol–gel coating of electrospun polymer fibers. Adv Mater. 2001;13:1577–9.

    Article  Google Scholar 

  79. Kriha O, Goring P, Milbradt M, Agarwal S, Steinhart M, Wehrspohn R, Wendorff JH, Greiner A. Polymer tubes with longitudinal composition gradient by face-to-face wetting. Chem Mater. 2008;20:1076–81.

    Article  CAS  Google Scholar 

  80. Allwright E, Berg DM, Djemour R, Steichen M, Dale PJ, Robertson N. Electrochemical deposition as a unique solution processing method for insoluble organic optoelectronic materials. J Mat Chem C. 2014;2:7232–8.

    Article  CAS  Google Scholar 

  81. Zhang F, Di C-A, Berdunov N, Hu Y, Hu Y, Gao X, Meng Q, Sirringhaus H, Zhu D. Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating. Adv Mater. 2013;25:1401–7.

    Article  CAS  Google Scholar 

  82. Shen S, Jiang P, He C, Zhang J, Shen P, Zhang Y, Yi Y, Zhang Z, Li Z, Li Y. Solution-processable organic molecule photovoltaic materials with bithienyl-benzodithiophene central unit and indenedione end groups. Chem Mater. 2015;25:2274–81.

    Article  Google Scholar 

  83. Pang J, Clark NA. Observation of a chiral-symmetry-breaking twist-bend instability in achiral freely suspended liquid-crystal films. Phys Rev Lett. 1994;73:2332–5.

    Article  CAS  Google Scholar 

  84. Chan HK, Dierking I. Growth laws for the phase ordering dynamics of the B 1 phase of a bent-core liquid crystal. Phys Rev E. 2004;70:021703.

    Article  Google Scholar 

  85. Haberl JM, Sanchez-Ferrer A, Mihut AM, Dietsch H, Hirt AM, Mezzenga R. Strain-induced macroscopic magnetic anisotropy from smectic liquid-crystalline elastomer–maghemite nanoparticle hybrid nanocomposites. Nanoscale. 2013;5:5539–48.

    Article  CAS  Google Scholar 

  86. Ha ST, Koh TM, Lin HC, Yeap GY, Win YF, Ong ST, Sivasothy Y, Ong LK. Heterocyclic benzothiazole-based liquid crystals: synthesis and mesomorphic properties. Liq Cryst. 2009;36:917–25.

    Article  CAS  Google Scholar 

  87. Cavallaro G, Lazzara G, Milioto S, Parisi F. Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. J Therm Anal Calorim. 2014;117:1293–8.

    Article  CAS  Google Scholar 

  88. Cavallaro G, Lazzara G, Milioto S, Parisi F, Sanzillo V. Modified halloysite nanotubes: nanoarchitectures for enhancing the capture of oils from vapor and liquid phases. ACS Appl Mater Interfaces. 2014;6:606–12.

    Article  CAS  Google Scholar 

  89. Cavallaro G, Lazzara G, Milioto S, Parisi F, Sparacino V. Thermal and dynamic mechanical properties of beeswax-halloysite nanocomposites for consolidating waterlogged archaeological woods. Polym Degrad Stab. 2015;120:220–5.

    Article  CAS  Google Scholar 

  90. Gingery D, Buhlmann P. Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation. Carbon. 2008;46:1966–72.

    Article  CAS  Google Scholar 

  91. Kabashin AV, Meunier M, Kingston C, Luong JHT. Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins. J Phys Chem B. 2003;107:4527–31.

    Article  CAS  Google Scholar 

  92. Date M, Okumura M, Tsubota S, Haruta M. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem. 2004;46(16):2129–32.

    Article  Google Scholar 

  93. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AA, Atwater HA. Plasmonics—a route to nanoscale optical devices. Adv Mater. 2001;13:1501–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Anca Moanta (University of Craiova) for synthetising and providing the CODA material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Dumitru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotaru, A., Dumitru, M. Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques. J Therm Anal Calorim 127, 21–32 (2017). https://doi.org/10.1007/s10973-016-5599-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5599-z

Keywords

Navigation