Skip to main content
Log in

Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isothermal titration calorimetry (ITC) has been used to characterize inclusion complex formation of β-cyclodextrin (β-CD) with ephedrine in aqueous solutions. ITC measurements were taken at 298.15 K on a MicroCal OMEGA ultrasensitive titration calorimeter (MicroCal Inc.). The experimental data were analyzed on the basis of the model of a single set of identical sites (ITC Tutorial Guide). Based on the experimental values of equilibrium constant (K) and enthalpy of complex formation (ΔH), the Gibbs energy of complex formation (ΔG), and the entropy of complex formation (ΔS), has been calculated. Obtained results showed that β-CD forms inclusion complex of stoichiometry 1:1 with ephedrine and the complex formation is entropy driven. Ephedrine and its complex with β-CD have been further used for covering of the obtained in a controlled way nanometric CaCO3 (calcite), which served as a solid supports for drug depositing. The calcite coating has been analyzed by the use of thermogravimetric method. The size of aggregates of pure calcite particles as well as CaCO3 particles covered by ephedrine and its complex with β-CD have been measured by DLS method. It has been found that pure CaCO3 aggregates are almost monodispersed with the mean diameter equal to 329 nm (±5 nm). Ephedrine and its complex with β-CD layers formed in situ on precipitated calcite surface prevented from crystallites aggregation and decreases particles mean diameter up to 274 nm (±5 nm) for ephedrine and 211 nm (±5 nm) for β-CD complex with ephedrine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Szejtli J. Cyclodextrin technology. Dordrecht: Kluwer Academic; 1988.

    Book  Google Scholar 

  2. Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033–46.

    Article  Google Scholar 

  3. Loftssan T, Brewster ME. Pharmaceutical application of cyclodextrins 1. Solubilization and stabilization. J Pharm Sci. 1996;85:1017–25.

    Article  Google Scholar 

  4. Rajewski RA, Stella VJ. Pharmaceutical application of cyclodextrins 2. In-vivo. Drug delivery. J Pharm Sci. 1996;85:1142–69.

    Article  CAS  Google Scholar 

  5. Kozbiał M, Gierycz P. Comparison of aqueous and 1-octanol solubility as well as liquid–liquid distribution of acyclovir derivatives and their complexes with hydroxypropyl-b-cyclodextrin. J Solut Chem. 2013;42:866–81.

    Article  Google Scholar 

  6. Kozbiał M, Gierycz P. Partitioning and complexation study of bioactive tricyclic acyclovir derivative with cyclodextrins. J Chem Thermodyn. 2014;72:23–30.

    Article  Google Scholar 

  7. Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875–917.

    Article  CAS  Google Scholar 

  8. Ahmed A, Wang H, Yu H, Zhou ZY, Ding Y, Hu Y. Surface engineered cyclodextrin embedded polymeric nanoparticles through host–guest interaction used for drug delivery. Chem Eng Sci. 2015;. doi:10.1016/j.ces.2014.07.045i.

    Google Scholar 

  9. Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev. 2013;65:1215–33.

    Article  CAS  Google Scholar 

  10. Wszelaka-Rylik M, Gierycz P. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. J Therm Anal Calorim. 2013;111(3):2029–35.

    Article  CAS  Google Scholar 

  11. Wszelaka-Rylik M, Piotrowska K, Gierycz P. Simulation, aggregation and thermal analysis of nanostructured calcite obtained in a controlled multiphase process. J Therm Anal Calorim. 2015;119(2):1323–38.

    Article  CAS  Google Scholar 

  12. Wszelaka-Rylik M, Gierycz P. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with tropane alkaloids. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4658-1.

    Google Scholar 

  13. Muller BK, Ritter H. Scrutinizing ITC-study on the formation of inclusion complexes of nonionic surfactant Triton X-100 and cyclodextrins. J Incl Phenom Macrocycl Chem. 2011;. doi:10.1007/s10847-011-9955-0.

    Google Scholar 

  14. Stojanov M, Wimmer R, Larsen KL. Study of the inclusion complexes formed between cetirizine and α-, β-, and γ-cyclodextrin and evaluation on their taste-masking properties. J Pharm Sci. 2011;100:3177–85.

    Article  CAS  Google Scholar 

  15. Bouchemal K. New challenges for pharmaceutical formulations and drug delivery systems characterization using isothermal titration calorimetry. Drug Discov Today. 2008;13:960–72.

    Article  CAS  Google Scholar 

  16. Castronuovo G, Niccoli M. Thermodynamics of inclusion complexes of natural and modified cyclodextrins with propranolol in aqueous solution at 298 K. Bioorg Med Chem. 2006;14:3883–7.

    Article  CAS  Google Scholar 

  17. Denadai AM, Teixeira KI, Santoro MM, Pimenta AM, Cortes ME, Sinisterra RD. Supramolecular self-assembly of beta-cyclodextrin: an effective carrier of the antimicrobial agent chlorhexidine. Carbohydr Res. 2007;342:2286–96.

    Article  CAS  Google Scholar 

  18. Illapakurthy AC, Wyandt CM, Stodghill SP. Isothermal titration calorimetry method for determination of cyclodextrin complexation thermodynamics between artemisinin and naproxen under varying environmental conditions. Eur J Pharm Biopharm. 2005;59:325–32.

    Article  CAS  Google Scholar 

  19. Nilsson M, Valente AJ, Olofsson G, Soderman O, Bonini M. Thermodynamic and kinetic characterization of host-guest association between bolaform surfactants and alpha- and beta-cyclodextrins. J Phys Chem B. 2007;112:11310–6.

    Article  Google Scholar 

  20. Sun DZ, Li L, Qiu XM, Liu F, Yin BL. Isothermal titration calorimetry and 1H NMR studies on host-guest interaction of paeonol and two of its isomers with beta-cyclodextrin. Int J Pharm. 2006;316:7–13.

    Article  CAS  Google Scholar 

  21. Kedra-Krolik K, Gierycz P. Precipitation of nanostructured calcite in a controlled multiphase process. J Cryst Growth. 2009;311:3674–81.

    Article  CAS  Google Scholar 

  22. Kędra-Królik K, Gierycz P, Bucki J. Controlled precipitation of CaCO3 sub-micro crystals of well-defined structure in a multiphase system. Arch Metall Mater. 2006;51:635–9.

    Google Scholar 

  23. Kędra-Królik K, Gierycz P. Obtaining calcium carbonate in a multiphase system by the use of new rotating disc precipitation reactor. J Therm Anal Calorim. 2006;83:579–82.

    Article  Google Scholar 

  24. Klug HP, Alexander LE. X-ray diffraction procedures. New York: Wiley; 1974.

    Google Scholar 

  25. Ndou T, Mukundan S, Warner IM. Complexation of ephedrine with β-cyclodextrin: an NMR spectroscopy study. J Incl Phenom Mol Recongnit Chem. 1993;15:9–25.

    Article  CAS  Google Scholar 

  26. Job P. Recherches dur la formation de complexes mineraux en solution, et sur leur stabilite. Ann Chim. 1928;9:113–34.

    CAS  Google Scholar 

  27. Benesi HA, Hildebrand JH. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc. 1949;71:2703–7.

    Article  CAS  Google Scholar 

  28. Blaschke G, Lamparter E, Schluter J. Racemization and hydrolysis of tropic acid alkaloids in the presence of cyclodextrins. Chirality. 1993;5:78–83.

    Article  CAS  Google Scholar 

  29. Kędra-Królik K, Wszelaka-Rylik M, Gierycz P. Thermal analysis of nanostructured calcite crystals covered with fatty acids. J Therm Anal Calorim. 2010;101(2):533–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Wszelaka-Rylik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wszelaka-Rylik, M. Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. J Therm Anal Calorim 127, 1825–1834 (2017). https://doi.org/10.1007/s10973-016-5467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5467-x

Keywords

Navigation