Skip to main content
Log in

Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Stearic acid/diatomite composite form-stable phase change materials (PCMs) have been prepared by using a direct impregnation method without vacuum treatment. The surface morphology, chemical compatibility, thermal properties and thermal stability were characterized by scanning electron microscopy, Fourier transform infrared spectrometer and X-ray diffraction (XRD), differential scanning calorimeter and thermogravimetric analysis (TG), respectively. The results show that there are only physical interactions between stearic acid and diatomite in composite PCM. XRD analysis reveals that crystal type is not affected by composite technology of SA/diatomite composite form-stable PCM with decrease in crystal size due to the limited pores in diatomite. The melting and freezing temperatures of stearic acid/diatomite composite, respectively, are 52.3 and 48.4 °C. The latent heat of SA/diatomite composite reaches 57.1 J g−1, potential to be used in a practical application. TG result indicates that the decomposition of SA/diatomite composite starts at 192 °C, implying that the SA/diatomite has a good thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sanchez L, Sanchez P, Lucas A. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym Sci. 2007;285:1377–85.

    Article  CAS  Google Scholar 

  2. Li W, Song G, Tang G, Chu X, Ma S, Liu C. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy. 2010;36:785–91.

    Article  Google Scholar 

  3. Giro-Paloma J, Konu klu Y, Fernandez A. Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material. Sol Energy. 2015;112:300–9.

    Article  CAS  Google Scholar 

  4. He F, Wang X, Wu D. Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor. Renew Energy. 2015;74:689–98.

    Article  CAS  Google Scholar 

  5. Yang X, Yuan Y, Zhang N, Cao X, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.

    Article  CAS  Google Scholar 

  6. Fang X, Fan L, Ding Q, Yao X, Wu Y, Hou J, Wang X, Yu Z, Chneg G, Hu Y. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy Convers Manag. 2014;80:103–9.

    Article  CAS  Google Scholar 

  7. Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manag. 2006;47:303–10.

    Article  CAS  Google Scholar 

  8. Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27:1271–7.

    Article  CAS  Google Scholar 

  9. Wang L, Meng D. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Appl Energy. 2010;87:2660–5.

    Article  CAS  Google Scholar 

  10. Tyagi V, Kaushik S, Tyagi S, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev. 2011;15:1373–91.

    Article  CAS  Google Scholar 

  11. Sun Z, Zhang Y, Zheng S, Park Y, Frost R. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochim Acta. 2013;558:16–21.

    Article  CAS  Google Scholar 

  12. Sanchez L, Sanchez P, Lucas A. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym Sci. 2007;285:1377–85.

    Article  CAS  Google Scholar 

  13. Song Q, Li Y, Xing J, Hu J, Marcus Y. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles. Polymer. 2007;48:3317–23.

    Article  CAS  Google Scholar 

  14. Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy. 2013;105:229–37.

    Article  CAS  Google Scholar 

  15. Yang X, Yuan Y, Zhang N, Cao X, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.

    Article  CAS  Google Scholar 

  16. Xu B, Li Z. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy. 2014;72:371–80.

    Article  CAS  Google Scholar 

  17. Li M, Wu Z, Kao H. Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials. Sol Energy Mater Sol Cells. 2011;95:2412–6.

    Article  CAS  Google Scholar 

  18. Li M, Kao H, Wu Z, Tao J. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials. Appl Energy. 2011;88:1606–12.

    Article  CAS  Google Scholar 

  19. Li M, Wu Z, Kao H. Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials. Appl Energy. 2011;88:3125–32.

    Article  CAS  Google Scholar 

  20. Sari A, Bicer A. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs. Sol Energy Mater Sol Cells. 2012;101:114–22.

    Article  CAS  Google Scholar 

  21. Karaman S, Karaipekli A, Sari A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95:1647–53.

    Article  CAS  Google Scholar 

  22. Fu X, Liu Z, Xiao Y, Wang J, Lei J. Preparation and properties of lauric acid/diatomite composites as novel form-stable phase change materials for thermal energy storage. Energy Build. 2015;104:244–9.

    Article  Google Scholar 

  23. Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy. 2013;105:229–37.

    Article  CAS  Google Scholar 

  24. Sari A, Alkan C, Altintas A. Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell. Appl Therm Energy. 2014;73:1160–8.

    Article  CAS  Google Scholar 

  25. Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew. Renew Sustain Energy Rev. 2014;29:482–98.

    Article  CAS  Google Scholar 

  26. Zhou D, Zhao C, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593–605.

    Article  CAS  Google Scholar 

  27. Zhang X, Fan Y, Tao X, Yick K. Crystallization and prevention of supercooling of microencapsulated n-alkanes. J Colloid Interface Sci. 2005;281:299–306.

    Article  CAS  Google Scholar 

  28. Karaipekli A, Sari A. Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol Energy. 2009;83:323–32.

    Article  CAS  Google Scholar 

  29. Li M, Wu Z, Kao H, Tan J. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manag. 2011;52:3275–81.

    Article  CAS  Google Scholar 

  30. Zhou X, Xiao H, Feng J. Preparation and thermal properties of paraffin/porous silica ceramic composite. Colloid Polym Sci. 2009;69:1246–9.

    CAS  Google Scholar 

  31. Mei D, Zhang B, Liu R, Zhang Y, Liu J. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95:2772–7.

    Article  CAS  Google Scholar 

  32. Karaipekli A, Sari A. Capric–myristic acid/vermiculite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energy. 2008;33:2599–605.

    Article  CAS  Google Scholar 

  33. Rozanna D, Salmiah A, Chuah T, Medyan R, Thomas Choog SY, Saari M. A study on thermal characteristics of phase change material (PCM) in gypsum board for building application. J Oil Palm Res. 2005;17:41–6.

    Google Scholar 

  34. Fu X, Kong W, Zhang Y, Jiang L, Wang J, Lei J. Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015;5:68881–9.

    Article  CAS  Google Scholar 

  35. Genc ZK, Canbay CA, Acar SS, Sekerci M, Genc M. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene–palmitic acid. J Therm Anal Calorim. 2015;120:1679–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Liu, Z., Wu, B. et al. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim 123, 1173–1181 (2016). https://doi.org/10.1007/s10973-015-5030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5030-1

Keywords

Navigation