Skip to main content
Log in

Preparation and expansion properties of a novel UV-curable intumescent flame-retardant coating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

N,N′-bis(2,4-di(acryloyloxyethyl)-[1,3,5]-triazin-2-yl)-hexane-1,6-diamine(BDAETH) and 2,2-dimethyl-1,3-propanediol glycerol-methacrylate phosphate (PGMH) were synthesized from cyanuric chloride and phosphorus oxychloride. BDAETH and PGMH were further blended in different ratios to prepare UV-curable intumescent flame-retardant coatings. The thermal behaviors of their cured films were studied by thermal gravimetric analysis, and the results showed that degradation process of cured blend films could be divided into three degradation regions. The degradation mechanism was further investigated by in situ Fourier transform infrared spectra. The flame-retardant properties and the expansion process of the intumescent flame-retardant coatings were further monitored by limiting oxygen index and a self-made equipment, which indicated the synthetic effect between BDAETH and PGMH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiao CM, Zhang CJ, Dong J, et al. Combustion behavior and thermal pyrolysis kinetics of flame-retardant epoxy composites based on organic–inorganic intumescent flame retardant. J Therm Anal Calorim. 2015;119(3):1759–67.

    Article  CAS  Google Scholar 

  2. Wang XF, Wang BB, Hu Y, et al. Flame retardancy and thermal property of novel UV-curable epoxy acrylate coatings modified by melamine-based hyperbranched polyphosphonate acrylate. Prog Org Coat. 2013;77(1):94–100.

    Article  Google Scholar 

  3. Xing WY, Song L, Lv P, et al. Preparation, flame retardancy and thermal behavior of a novel UV-curable coating containing phosphorus and nitrogen. Mater Chem Phys. 2010;123(481):486.

    Google Scholar 

  4. Wang F, Hu JQ, Tu WP. Research progress of UV-curable oligomer acrylate and its coatings. Thermosetting Resin. 2007;22(3):41–6.

    Google Scholar 

  5. Chen XL, Liu L, Zhuo JL, et al. Influence of iron oxide green on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites. J Therm Anal Calorim. 2015;119(1):625–33.

    Article  CAS  Google Scholar 

  6. Ding J, Shi WF. Thermal degradation and flame retardancy of hexaacrylated/hexaethoxyl cyclophosphazene and their blends with epoxy aerylate. Polym Degrad Stab. 2004;84(1):159–65.

    Article  CAS  Google Scholar 

  7. Wang XF, Wang BB, Xing WY, et al. Flame retardancy and thermal property of novel UV-curable epoxy acrylate coatings modified by melamine-based hyperbranched polyphosphonate acrylate. Prog Org Coat. 2014;77(1):94–100.

    Article  CAS  Google Scholar 

  8. Wang HL, Xu SP, Shi WF. Photopolymerization behaviors of hyperbranched polyphosphonate acrylate and properties of the UV cured film. Prog Org Coat. 2009;65(4):417–24.

    Article  CAS  Google Scholar 

  9. Chen YZ, Peng HQ, Li JH, et al. A novel flame retardant containing phosphorus, nitrogen, and sulfur. J Therm Anal Calorim. 2014;115(2):1639–49.

    Article  CAS  Google Scholar 

  10. Agrawal S, Narula AK. Curing and thermal behaviour of a flame retardant cycloaliphatic epoxy resin based on phosphorus containing poly (amide–imide) s. J Therm Anal Calorim. 2014;115(2):1693–703.

    Article  CAS  Google Scholar 

  11. Beheshti A, Heris SZ. Experimental investigation and characterization of an efficient nanopowder-based flame retardant coating for atmospheric-metallic substrates. Powder Technol. 2015;269:22–9.

    Article  CAS  Google Scholar 

  12. Liang HB, Shi WF, Gong M. Expansion behaviour and thermal degradation of tri(acryloyloxyethyl) phosphate/methacrylated phenolic melamine intumescent flame retardant system. Polym Degrad Stab. 2005;90(1):1–8.

    Article  CAS  Google Scholar 

  13. Gao M, Wu WH, Liu S, et al. Thermal degradation and flame retardancy of rigid polyurethane foams containing a novel intumescent flame retardant. J Therm Anal Calorim. 2014;117(3):1419–25.

    Article  CAS  Google Scholar 

  14. Huang ZG, Shi WF. Synthesis and properties of a novel hyperbranched polyphosphate acrylate applied to UV curable flame retardant coatings. Eur Polymer J. 2007;43(4):1302–12.

    Article  CAS  Google Scholar 

  15. Wang HL, Xu SP, Shi WF, et al. Photopolymerization behaviors of hyperbranched polyphosphonate acrylate and properties of the UV cured film. Prog Org Coat. 2009;65(4):417–24.

    Article  CAS  Google Scholar 

  16. Chen XL, Hu Y, Song L, et al. Thermal properties and combustion behaviors of UV-cured phosphate triacrylate/star poly(urethane acrylate) oligomer blends. Polym Adv Technol. 2008;19(5):393–8.

    Article  Google Scholar 

  17. Xing WY, Song L, Hu Y, et al. Combustion and thermal behaviors of the novel UV-cured intumescent flame retardant coatings containing phosphorus and nitrogen. e-Polymers. 2010;10(1):684–94.

    Article  Google Scholar 

  18. Liang HB, Shi WF. Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings. Polym Degrad Stab. 2004;84(3):525–32.

    Article  CAS  Google Scholar 

  19. Zhou S. Preparation and characterization of intumescent flame retardant and silane-crosslinked PP and its EPDM composites. Dissertation for doctor’s degree. Hefei: University of Science and Technology of China; 2009.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (51103069 and 51463017), Jiang’xi Educational Committee (GJJ12423) and Foundation of Aeronautics of China (2014ZF56018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, J., Liang, H., Zhang, D. et al. Preparation and expansion properties of a novel UV-curable intumescent flame-retardant coating. J Therm Anal Calorim 122, 329–338 (2015). https://doi.org/10.1007/s10973-015-4733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4733-7

Keywords

Navigation