Skip to main content
Log in

Stability and dehydration kinetics of the monohydrate racemic tartaric acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Racemic tartaric acid (race-TA) exists in the solid state as a monohydrate and an anhydrous. There is a large difference in their bioavailability and product performance. In this paper, the stability of monohydrate race-TA was investigated. The results show that water activity is the major factor determining the stability of race-TA, monohydrate or anhydrous, which crystallizes from the mixed solvent at certain temperature. Meanwhile, the effect of temperature on the stability of monohydrate race-TA was studied using DSC, which is important to control the stability of monohydrate race-TA during drying and storage. Finally, the dehydration kinetics of monohydrate race-TA was investigated in nitrogen purge using TG–DSC. Based on the result, the kinetic parameters (activation energy and pre-exponential factor) and the most probable kinetic model that gives the best description of the dehydration process for monohydrate race-TA are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a w :

Water activity

T :

Temperature °C

K h :

Equilibrium constant

x w :

Water content

E :

Activation energy kJ mol−1

A :

Pre-exponential s−1

α :

Conversion rate %

β :

Heating rate °C min−1

References

  1. Khankari RK, Grant DJ. Pharmaceutical hydrates. Thermochim Acta. 1995;248:61–79.

    Article  CAS  Google Scholar 

  2. Mullin JW, Mullin J. Crystallization, vol. 4. Butterworth: Heinemann; 1993.

    Google Scholar 

  3. Bechtloff B, Nordhoff S, Ulrich J. Pseudopolymorphs in industrial use. Cryst Res Technol. 2001;36(12):1315–28.

    Article  CAS  Google Scholar 

  4. Wang X, Dang L, Black S. How to crystallize anhydrous racemic tartaric acid from an Ethanol–Water solution. Ind Eng Chem Res. 2012;51(6):2789–96.

    Article  CAS  Google Scholar 

  5. Nie J-J, Xu D-J, Wu J-Y. Redetermination of racemic tartaric acid monohydrate. Acta Crystallogr Sect E. 2001;57(5):0428–9.

    Article  Google Scholar 

  6. Luner PE, Patel AD, Swenson DC. (±)-Tartaric acid. Acta Crystallogr Sect. C. 2002;58(6):0333–5.

    Article  Google Scholar 

  7. Gerstacker A. XXIX. Röntgenographische Untersuchung einiger triklin-pinakoidaler Kristallarten. Z Kristallogr Kristallgeom Kristallphys Kristallchem 1928;66:421–33.

  8. Jain MK. Organic chemistry. Jalandar: Shoban Lal Nagin Chand and Co; 1991.

    Google Scholar 

  9. Mukherjei SM, Singh SP, Kapoor RP. Organic chemistry. New Delhi: Wiley Eastern Limited; 1993.

    Google Scholar 

  10. Windholz M, Budavari S, Stroumtsos LY. The Merck index. An encyclopedia of chemicals and drugs. Rahway: Merck & Co; 1976.

    Google Scholar 

  11. Parry G. The crystal structure of hydrate racemic acid. Acta Crystallogr. 1951;4(2):131–8.

    Article  CAS  Google Scholar 

  12. Zhu H, Grant DJ. Influence of water activity in organic solvent + water mixtures on the nature of the crystallizing drug phase. 2. Ampicillin. Int J Pharm. 1996;139(1):33–43.

    Article  CAS  Google Scholar 

  13. Zhang S, Shi H-S, Huang S-W. Dehydration characteristics of struvite-K pertaining to magnesium potassium phosphate cement system in non-isothermal condition. J Therm Anal Calorim. 2013;111(1):35–40.

    Article  CAS  Google Scholar 

  14. Lafontaine, A, Sanselme M, Cartigny Y. Characterization of the transition between the monohydrate and the anhydrous citric acid. J Therm Anal Calorim. 2013;112(1)1–9.

  15. Shefter E, Higuchi T. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. J Pharm Sci. 1963;52(8):781–91.

    Article  CAS  Google Scholar 

  16. Zhang C-T, Wang J-K, Wang Y-L. Non-isothermal dehydration kinetics of ceftriaxone disodium hemiheptahydrate. Ind Eng Chem Res. 2005;44(18):7057–61.

    Article  CAS  Google Scholar 

  17. Janković B, Adnađević B, Jovanović J. Non-isothermal kinetics of dehydration of equilibrium swollen poly (acrylic acid) hydrogel. J Therm Anal Calorim. 2005;82(1):7–13.

    Article  Google Scholar 

  18. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur. Stand. 1966;70(6):487–523.

    Article  CAS  Google Scholar 

  19. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  20. Rooney JJ. Isokinetic temperature and the compensation effect in catalysis. J Mol Catal A: Chem. 1998;133(3):303–5.

    Article  CAS  Google Scholar 

  21. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  22. Coats A, Redfern J-P. Kinetic parameters from thermogravimetric data. II. J Polym Sci, Part B: Polym Phys. 1965;3(11):917–20.

    Article  CAS  Google Scholar 

  23. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  24. Akahira T, Sunose T. Research report of Chiba Institute Technology. Sci Technol. 1971;16:22–31.

    Google Scholar 

  25. Hu R-Z, Shi Q-Z. Thermal analysis kinetics. Beijing: Sci. Press; 2001.

    Google Scholar 

  26. Sharp J, Brindley G, Achar BN. Numerical data for some commonly used solid state reaction equations. J Am Ceram Soc. 1966;49(7):379–82.

    Article  CAS  Google Scholar 

  27. Muraleedharan K, Labeeb P. Kinetics of the thermal dehydration of potassium titanium oxalate, K2TiO(C2O4)2·2H2O. J Therm Anal Calorim. 2012;109(1):89–96.

    Article  CAS  Google Scholar 

  28. Foppoli A, Zema L, Maroni A. Dehydration kinetics of theophylline-7-acetic acid monohydrate. J Therm Anal Calorim. 2010;99(2):649–54.

    Article  CAS  Google Scholar 

  29. Kullyakool S, Danvirutai C, Siriwong K. Determination of kinetic triplet of the synthesized Ni3(PO4)2·8H2O by non-isothermal and isothermal kinetic methods. J Therm Anal Calorim. 2014;115(2):1497–504.

  30. Udovenko V, Mazanko T. Liquid-vapour equilibrium in propan-2-ol-water and propan-2-ol-benzene systems. Russ J Phys Chem. 1967;41(7):863.

    Google Scholar 

  31. Zhu H, Yuen C, Grant DJ. Influence of water activity in organic solvent + water mixtures on the nature of the crystallizing drug phase. 1. Theophylline. Int J Pharm. 1996;135(1):151–60.

    Article  CAS  Google Scholar 

  32. Gao X, Dollimore D. The thermal decomposition of oxalates: part 26. A kinetic study of the thermal decomposition of manganese (II) oxalate dihydrate. Thermochim Acta. 1993;215:47–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Dang, L., Zhu, G. et al. Stability and dehydration kinetics of the monohydrate racemic tartaric acid. J Therm Anal Calorim 123, 1919–1926 (2016). https://doi.org/10.1007/s10973-015-4699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4699-5

Keywords

Navigation