Skip to main content
Log in

Confinement crystallization of poly(l-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets

A comparative study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two sets of multiwalled carbon nanotubes (MWCNTs)/PLLA nanocomposites and graphene nanosheets (GNSs)/PLLA nanocomposites with various MWCNTs and GNSs loadings prepared by a melt blending approach were investigated in terms of both nonisothermal and isothermal crystallization behaviors. The results indicated that MWCNTs and GNSs not only acted as heterogeneous nucleating agents for PLLA crystallization but also restricted the mobility and diffusion of PLLA chains. At low MWCNTs and GNSs concentrations, the nucleation effect of MWCNTs and GNSs was dominant to achieve accelerated overall crystallization kinetics. As the MWCNTs and GNSs concentration rose up to 2.0 and 2.5 mass%, respectively, the MWCNTs and GNSs network structures were formed in the PLLA matrix, which were proved by solid-like rheological behavior at low frequencies in rheological measurement. With further increasing concentration of MWCNTs above the critical concentration, an enhanced nucleation density but an almost unchanged overall crystallization rate for the MWCNTs/PLLA nanocomposites indicated that the expected increase in the crystallization promoting effect from more MWCNTs was offset by some confining effect. However, for GNSs, the formed network structure provided a more severely confined space for PLLA crystal nucleation and growth in contrast to MWCNTs, resulting in the decreased nucleation density and retarded crystallization rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ning NY, Fu SR, Zhang W, Chen F, Wang K, Deng H, Zhang Q, Fu Q. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog Polym Sci. 2012;37:1425–55.

    Article  CAS  Google Scholar 

  2. Chatterjee T, Krishnamoorti R. Rheology of polymer carbon nanotubes composites. Soft Matter. 2013;9:9515–29.

    Article  CAS  Google Scholar 

  3. Xu DH, Wang ZG. Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer. 2008;49:330–8.

    Article  CAS  Google Scholar 

  4. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA. Graphene filled polymer nanocomposites. J Mater Chem. 2011;21:3301–10.

    Article  CAS  Google Scholar 

  5. Zhao YY, Qiu ZB, Yang WT. Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). J Phys Chem B. 2008;112:16461–8.

    Article  CAS  Google Scholar 

  6. Xu ZH, Niu Y, Wang ZG, Li H, Yang L, Qiu J, Wang H. Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Interfaces. 2011;3:3744–53.

    Article  CAS  Google Scholar 

  7. Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS. Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules. 2010;43:5000–8.

    Article  CAS  Google Scholar 

  8. Li LY, Li CY, Ni CY. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc. 2006;128:1692–9.

    Article  CAS  Google Scholar 

  9. Xu JZ, Liang YY, Zhong GJ, Li HL, Chen C, Li LB, Li ZM. Graphene oxide nanosheet induced intrachain conformational ordering in a semicrystalline polymer. J Phys Chem Lett. 2012;3:530–5.

    Article  CAS  Google Scholar 

  10. Achaby ME, Qaiss A. Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Mater Des. 2013;44:81–9.

    Article  Google Scholar 

  11. Li LY, Li CY, Ni CY, Rong LX, Hsiao B. Structure and crystallization behavior of nylon 66/multi-walled carbon nanotube, nanocomposites at low carbon nanotube contents. Polymer. 2007;48:3452–60.

    Article  CAS  Google Scholar 

  12. Wurm A, Lellinger D, Minakov AA, Skipa T, Pötschke P, Nicula R, Alig I, Schick C. Crystallization of poly(ε-caprolactone)/MWCNT composites: a combined SAXS/WAXS, electrical and thermal conductivity study. Polymer. 2014;55:2220–32.

    Article  CAS  Google Scholar 

  13. Wang HS, Qiu ZB. Crystallization behaviors of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta. 2011;526:229–36.

    Article  CAS  Google Scholar 

  14. Lu KB, Grossiord N, Koning CE, Miltner HE, Mele B, Loos J. Carbon nanotube/isotactic polypropylene composites prepared by latex technology: morphology analysis of CNT-induced nucleation. Macromolecules. 2008;41:8081–5.

    Article  CAS  Google Scholar 

  15. Singh NK, Singh SK, Dash D, Gonugunta P, Misra M, Maiti P. CNT induced β-phase in polylactide: unique crystallization, biodegradation and biocompatibility. J Phys Chem C. 2013;117:10163–74.

    Article  CAS  Google Scholar 

  16. Trujillo M, Arnal ML, Müller AJ, Bredeau ST, Bonduel D, Dubois PH, Hamley IW, Castelletto V. Thermal fractionation and isothermal crystallization of polyethylene nanocomposites prepared by in situ polymerization. Macromolecules. 2008;41:2087–95.

    Article  CAS  Google Scholar 

  17. Chen PP, Wang Y, Wei T, Meng Z, Jia XD, Xi K. Greatly enhanced mechanical properties and heat distortion resistance of poly(L-lactic acid) upon compositing with functionalized reduced graphene oxide. J Mater Chem A. 2013;1:9028–32.

    Article  CAS  Google Scholar 

  18. Xu JZ, Chen C, Wang Y, Tang H, Li ZM, Hsiao BS. Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules. 2011;44:2808–18.

    Article  CAS  Google Scholar 

  19. Wu DF, Cheng YX, Feng SH, Yao Z, Zhang M. Crystallization behavior of polylactide/graphene composites. Ind Eng Chem Res. 2013;52:6731–9.

    Article  CAS  Google Scholar 

  20. Huang HD, Xu JZ, Fan Y, Xu L, Li ZM. Poly(L-lactic acid) crystallization in a confined space containing graphene oxide nanosheets. J Phys Chem B. 2013;117:10641–51.

    Article  CAS  Google Scholar 

  21. Mai F, Wang K, Yao MJ, Deng H, Chen V, Fu QA. Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure. J Phys Chem B. 2010;114:10693–702.

    Article  CAS  Google Scholar 

  22. Li CY, Li LY, Cai WW, Kodjie SL, Tenneti KK. Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv Mater. 2005;17:1198–202.

    Article  CAS  Google Scholar 

  23. Zhang L, Tao T, Li CZ. Formation of polymer/carbon nanotubes nano-hybrid shish-kebab via non-isothermal crystallization. Polymer. 2009;50:3835–40.

    Article  CAS  Google Scholar 

  24. Li L, Wang W, Laird ED, Li CY, Defaux M, Ivanov DA. Polyethylene/carbon nanotube nano hybrid shish-kebab obtained by solvent evaporation and thin-film crystallization. Polymer. 2011;52:3633–8.

    Article  CAS  Google Scholar 

  25. Cheng S, Chen X, Hsuan YG, Li CY. Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites. Macromolecules. 2011;45:993–1000.

    Article  Google Scholar 

  26. Blanco I, Siracusa V. Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim. 2013;112:1171–7.

    Article  CAS  Google Scholar 

  27. Zhao HW, Bian YJ, Li Y, Dong QL, Han CY, Dong LS. Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J Mater Chem A. 2014;2:8881–92.

    Article  CAS  Google Scholar 

  28. Kim KW, Lee BH, Kim HJ, Sriroth K, Dorgan JR. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim. 2012;108:1131–9.

    Article  CAS  Google Scholar 

  29. Nimah H, Woo EM. A novel hexagonal crystal with a hexagonal star-shaped central core in poly(l-lactide) (PLLA) induced by an ionic liquid. CrystEngComm. 2014;16:4945–9.

    Article  CAS  Google Scholar 

  30. Fillon B, Wittmann J, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polyproylene (α phase) investigated by differential scanning calorimetry. J Polym Sci B. 1993;31:1383–93.

    Article  CAS  Google Scholar 

  31. Fillon B, Thierry A, Lotz B, Wittmann JC. Efficiency scale for polymer nucleating agents. J Therm Anal Calorim. 1994;42:721–31.

    Article  CAS  Google Scholar 

  32. Anderson KS, Hillmyer MA. Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer. 2006;47:2030–5.

    Article  CAS  Google Scholar 

  33. Wei XF, Bao RY, Cao ZQ, Yang W, Xie BH, Yang MB. Stereocomplex crystallite network in asymmetric PLLA/PDLA blends: formation, structure and confining effect on the crystallization rate of homocrystallites. Macromolecules. 2014;47:1439–48.

    Article  CAS  Google Scholar 

  34. Aoyama S, Park YT, Ougizawa T, Macosko CW. Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs carbon nanotubes. Polymer. 2014;55:2077–85.

    Article  CAS  Google Scholar 

  35. Pötschke P, Abdel-Goad M, Pegel S, Jehnichen D, Mark JE, Zhou DH, Heinric G. Comparisons among electrical and rheological properties of melt-mixed composites containing various carbon nanostructures. J Macromo Sci A. 2010;47:12–9.

    Article  Google Scholar 

  36. Gallego MM, Bernal MM, Hernandez M, Verdejo R, Lopez-Manchado MA. Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur Polym J. 2013;49:1347–53.

    Article  Google Scholar 

  37. Horst RH, Winter HH. Stable critical gels of a copolymer of ethene and 1-butene achieved by partial melting and recrystallization. Macromolecules. 2000;33:7538–43.

    Article  CAS  Google Scholar 

  38. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  39. Avrami M. Kinetics of phase change. II. Transformation–time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  40. Okada K, Watanabe K, Urushihara T, Toda A, Hikosak M. Role of epitaxy of nucleating agent (NA) in nucleation mechanism of polymers. Polymer. 2007;48:401–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (50703042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, S., Li, Y., Zhao, H. et al. Confinement crystallization of poly(l-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets. J Therm Anal Calorim 122, 379–391 (2015). https://doi.org/10.1007/s10973-015-4695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4695-9

Keywords

Navigation