Skip to main content
Log in

Assessment of polyamide-6 crystallinity by DSC

Temperature dependence of the melting enthalpy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study addresses the question of the crystallinity determination of PA6 by means of DSC in the case when structural changes occur over a very large temperature domain during the heating scan. The temperature dependence of the melting enthalpy is then of crucial importance for determining the amount of crystalline phase involved in the various processes, and thus the initial crystallinity. Both DSC and WAXS measurements have been carried out of a PA6 sample submitted to various thermal treatments in order to identify the crystalline forms and the temperature-induced structural changes. The melting enthalpy dependence on temperature of PA6 was computed from heat capacity data of the solid and liquid borrowed from literature data tables. Similar computations were performed for PA66 which is likely to exhibit analogous structural changes during DSC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ward IM. Mechanical properties of solid polymers. New-York: Wiley-Interscience; 1971.

    Google Scholar 

  2. Galeski A. Strength and toughness of crystalline polymer systems. Prog Polym Sci. 2003;28:1643–99.

    Article  CAS  Google Scholar 

  3. Patlazhan S, Remond Y. Structural mechanics of semi-crystalline polymers prior to the yield point: a review. J Mater Sci. 2012;47:6749–67.

    Article  CAS  Google Scholar 

  4. Wunderlich B. Macromolecular physics, vol. 1, chap. 4: crystal structure, morphology and defects. New-York: Academic Press; 1971.

    Google Scholar 

  5. Seguela R. Temperature dependence of the melting enthalpy of poly(ethylene-terephthalate) and poly(aryl-ether-ether-ketone). Polymer. 1993;34:1761–4.

    Article  CAS  Google Scholar 

  6. Khanna YP, Kuhn WP. Measurement of crystalline index in nylons by DSC: complexities and recommendations. J Polym Sci Polym Phys. 1997;35:2219–31.

    Article  CAS  Google Scholar 

  7. Mathot VBF. Temperature dependence of some thermodynamic functions for amorphous and semi-crystalline polymers. Polymer. 1984;25:579–99.

    Article  CAS  Google Scholar 

  8. Wunderlich B. Macromolecular physics, vol. 3, chap. 8: crystal melting. New-York: Academic Press; 1971.

    Google Scholar 

  9. Starkweather HW, Moore GE, Hansen JE, Roder TM, Brooks RE. Effect of crystallinity on the properties of nylons. J Polym Sci. 1956;21:189–204.

    Article  CAS  Google Scholar 

  10. Bessel TJ, Hull D, Shortall JB. The effect of polymerization conditions and crystallinity on the mechanical properties and fracture of spherulitic nylon6. J Mater Sci. 1975;10:1127–63.

    Article  Google Scholar 

  11. Russell DP, Beaumont PWR. Structure and properties of injection-moulded nylon-6. Part 1. Structure and morphology. J Mater Sci. 1980;15:197–207.

    Article  CAS  Google Scholar 

  12. Khanna YP. Overview of transition phenomenon in nylon6. Macromolecules. 1992;25:3298–300.

    Article  CAS  Google Scholar 

  13. Androsch R, Stolp M, Radusch H-J. Crystallization of amorphous polyamides from the glassy state. Acta Polym. 1996;47:99–104.

    Article  CAS  Google Scholar 

  14. Penel-Pierron L, Seguela R, Lefebvre JM. Structural and mechanical behavior of nylon6 films. Part I. Identification and stability of crystalline phases. J Polym Sci Polym Phys. 2001;39:484–95.

    Article  CAS  Google Scholar 

  15. Persyn O, Miri V, Lefebvre J-M, Gors C, Stroeks A. Structural organization and drawability in polyamide blends. Polym Eng Sci. 2004;44:261–71.

    Article  CAS  Google Scholar 

  16. Kolesov I, Mileva D, Androsch R, Schick C. Structure formation of polyamide 6 from the glassy state by fast scanning chip calorimetry. Polymer. 2011;52:5156–65.

    Article  CAS  Google Scholar 

  17. Tidick P, Fakirov S, Avramova N, Zachmann H-G. Effect of the melt annealing time on the crystallization of nylon6 with various molecular weights. Colloid Polym Sci. 1984;262:445–9.

    Article  CAS  Google Scholar 

  18. Kyotani M, Mitsuhashi S. Studies of the crystalline forms of nylon6. II. Crystallization from the melt. J Polym Sci Polym Phys. 1972;10:1497–508.

    Article  CAS  Google Scholar 

  19. Murthy NS. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. J Polym Sci Polym Phys. 2006;44:1763–82.

    Article  CAS  Google Scholar 

  20. Miri V, Elkoun S, Peurton F, Vanmansart C, Lefebvre J-M, Krawczak P, Seguela R. Crystallization kinetics and crystal structure of nylon6-clay nanocomposites: combined effects of thermomechanical history, clay content, and cooling conditions. Macromolecules. 2008;41:9234–44.

    Article  CAS  Google Scholar 

  21. Murthy NS, Aharoni SM, Szollosi AB. Stability of the γ form and the development of the α form in nylon6. J Polym Sci Polym Phys. 1985;23:2549–65.

    Article  CAS  Google Scholar 

  22. Stepaniak RF, Garton A, Carlsson DJ, Wiles DM. An examination of the crystal structures present in nylon-6 fiber. J Polym Sci Polym Phys. 1979;17:987–99.

    Article  CAS  Google Scholar 

  23. Gianchandani J, Spruiell JE, Clark ES. Polymorphism and orientation development in melt spinning, drawing and annealing of nylon6 filaments. J Appl Polym Sci. 1982;27:3527–51.

    Article  CAS  Google Scholar 

  24. Murase S, Kashima M, Kudo K, Hirami M. Structure and properties of high-speed spun fibers of nylon 6. Macromol Chem Phys. 1997;198:561–72.

    Article  CAS  Google Scholar 

  25. Auriemma F, Petraccone V, Parravicini L, Corradini P. Mesomorphic form (β) of nylon 6. Macromolecules. 1997;30:7554–9.

    Article  CAS  Google Scholar 

  26. Mileva D, Kolesov I, Androsch R. Morphology of cold-crystallized polyamide 6. Colloid Polym Sci. 2012;290:971–8.

    Article  CAS  Google Scholar 

  27. Xie S, Seguela R, Lefebvre J-M, Gloaguen J-M. Re-examination of the sub-Tm exotherm in polyamide 6: the roles of thermal history, water and clay. J Polym Sci Polym Phys. 2009;47:2385–93.

    Article  CAS  Google Scholar 

  28. Holmes DR, Bunn CW, Smith DJ. The crystal structure of polycaproamide: nylon 6. J Polym Sci. 1955;17:159–77.

    Article  CAS  Google Scholar 

  29. Arimoto H, Ishibashi M, Hirai M, Chatani Y. Crystal structure of the γ-form of nylon 6. J Polym Sci Part A. 1965;3:317–26.

    CAS  Google Scholar 

  30. Murthy NS, Bray RG, Correale ST, Moore RAF. Drawing and annealing of nylon-6 fibers: studies of crystal growth, orientation of amorphous and crystalline domains and their influence on properties. Polymer. 1995;36:3863–73.

    Article  CAS  Google Scholar 

  31. Kolesov I, Androsch R. The rigid amorphous fraction of cold-crystallized polyamide 6. Polymer. 2012;53:4770–7.

    Article  CAS  Google Scholar 

  32. Gaur U, Lau SF, Wunderlich BB, Wunderlich B. Heat capacity and other thermodynamic properties of linear macromolecules. VIII. Polyesters and polyamides. J Phys Chem Ref Data. 1983;12:65–89.

    Article  CAS  Google Scholar 

  33. Pyda M, Wunderlich B. Heat capacities of high polymers. In: Brandrup J, Immergut E, Grulke EA, editors. Polymer handbook, chap.VI/511–VI/512. 4th ed. New-York: Wiley; 1999.

    Google Scholar 

  34. Illers H-K. Polymorphie, Kristallinität und Schmelzwärme von poly(ε-caprolactam). 2. Teil: Kalorimetrische Untersuchungen. Makromol Chem. 1978;179:497–507.

    Article  CAS  Google Scholar 

  35. Sanchez MS, Mathot VBF, Poel GV, Groeninckx G, Bruls W. Crystallization of polyamide confined in sub-micrometer droplets dispersed in a molten polyethylene matrix. J Polym Sci Polym Phys. 2006;44:815–25.

    Article  Google Scholar 

  36. Starkweather HW Jr. Transitions and relaxations. In: Kohan MI, editor. Nylon plastics handbook, chap. 6. Munich: Carl Hanser Verlag; 1995.

    Google Scholar 

  37. Aharoni SM, Sibilia JP. On the conformational behavior and solid state extrudability of crystalline polymers. Polym Eng Sci. 1979;19:450–5.

    Article  CAS  Google Scholar 

  38. Mathot VBF. New routes for thermal analysis and calorimetry as applied to polymeric systems. J Therm Anal Calorim. 2001;64:15–35.

    Article  CAS  Google Scholar 

  39. van Ekeren PJ, Ionescu LD, Mathot VBF, van Miltenburg JC. Specific heat capacities and thermal properties of a homogeneous ethylene-1-butene copolymer by adiabatic calorimetry. Thermochim Acta. 2002;391:185–96.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Rhone-Alpes Region for the grant of a doctoral fellowship to C. Millot (Academic Research Communities—Energies Division). The European Synchrotron Radiation Facility (Grenoble, France) is also acknowledged for time allocation on the BM02 beamline for the WAXS experiments. The authors are indebted to Dr. C. Rochas (CERMAV, Grenoble) for assistance in the WAXS experiments and working of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Lame.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millot, C., Fillot, LA., Lame, O. et al. Assessment of polyamide-6 crystallinity by DSC. J Therm Anal Calorim 122, 307–314 (2015). https://doi.org/10.1007/s10973-015-4670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4670-5

Keywords

Navigation