Skip to main content
Log in

Thermal decomposition characteristics of mixtures of ammonium dinitramide and copper(II) oxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ammonium dinitramide (ADN) is one of the most promising new solid oxidizers for rocket propellants, since its oxygen balance and energy content are relatively high, and it does not contain halogens. To gain a better understanding of the thermal decomposition mechanism of ADN, the thermal decomposition of ADN and copper(II) oxide (CuO) mixtures was investigated. The thermal behavior and activation energy associated with the decomposition of ADN/CuO mixtures were analyzed using sealed cell differential scanning calorimetry (SC-DSC). SC-DSC results showed that CuO affects the thermal characteristics of ADN and promotes its decomposition. Thermogravimetry–differential thermal analysis–evolved gas analysis was also performed, and in addition, the decomposition behavior was observed using hot stage microscopy. From the results, a thermal decomposition mechanism was proposed for ADN/CuO. In this mechanism, copper dinitramide Cu[N(NO2)2]2 is generated at the surface of the CuO almost simultaneously with the melting of the ADN. Next, a significant exothermic reaction occurs, associated with the decomposition of Cu[N(NO2)2]2, followed by decomposition of CuO via [Cu(NH3)2](NO3)2 and Cu(NO3)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guerya JF, Chang IS, Shimada T, Glick M, Boury D, Robert E, Napior J, Wardle R, Perut C, Calabro M, Glick R, Habu H, Sekino N, Vigier G, Andrea BD. Solid propulsion for space applications: an updated roadmap. Acta Astronaut. 2010;66:201–19.

    Article  Google Scholar 

  2. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD. A review of energetic materials synthesis. Thermochim Acta. 2002;384:187–204.

    Article  CAS  Google Scholar 

  3. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;161:589–607.

    Article  CAS  Google Scholar 

  4. Sackheim RL, Masse RK. Green propulsion advancement: challenging the maturity of monopropellant hydrazine. J Propul Power. 2014;30:265–77.

    Article  CAS  Google Scholar 

  5. Schöyer HFR, Welland-Veltmans WHM, Louwers J, Korting PAOG, van der Heijden AEDM, Keizers HLJ, van den Berg RP. Overview of the development of hydrazinium nitroformate. J Propul Power. 2001;18:131–7.

    Google Scholar 

  6. Pandey M, Jha S, Kumar R, Mishra S, Jha RR. The pressure effect study on the burning rate of ammonium nitrate-HTPB-based propellant with the influence catalysts. J Therm Anal Calorim. 2012;107:135–40.

    Article  CAS  Google Scholar 

  7. Sugie Y, Miyake A. Effects of temperature on nitration of sulfamates. J Therm Anal Calorim. 2014;116:1213–7.

    Article  CAS  Google Scholar 

  8. Venkatachalam S, Santhosh G, Nian KN. An overview on synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts. Propellants Explos Pyrotech. 2004;29:178–87.

    Article  CAS  Google Scholar 

  9. Santhosh G, Ghee AH. Synthesis and kinetic analysis of isothermal and non-isothermal decomposition of ammonium dinitramide prills. J Therm Anal Calorim. 2008;94:263–70.

    Article  CAS  Google Scholar 

  10. Starunin VA, D’Yakov AP, Manelis GB. Combustion of ammonium dinitramide. Combust Flame. 1999;117:429–34.

    Article  Google Scholar 

  11. Matsunaga H, Yoshino S, Kumasaki M, Habu H, Miyake A. Aging characteristics of the energetic oxidizer ammonium dinitramide. Sci Tech Energ Mater. 2011;72:131–5.

    CAS  Google Scholar 

  12. Katsumi T, Inoue T, Hori K. Mechanism of high burning rate of HAN-based solution. Sci Tech Energ Mater. 2013;74:1–5.

    CAS  Google Scholar 

  13. Bottaro JC, Penwell PE, Schmitt RJ. 1,1,3,3-tetraoxo-1,2,3-triazapropene anion, a new oxy anion of nitrogen: the dinitramide anion and its salts. J Am Chem Soc. 1997;119:9405–10.

    Article  CAS  Google Scholar 

  14. Pak Z. Some ways to higher environmental safety of solid rocket propellant application. In: Proceedings of AIAA/SAE/ASME/ASEE 29th joint propulsion conference and exhibition. Monterey, CA, USA; 1993.

  15. Östmark H, Bemm U, Langlet A, Sanden R, Wingborg N. The properties of ammonium dinitramide (ADN): part 1, basic properties and spectroscopic data. J Energ Mater. 2000;18:123–8.

    Article  Google Scholar 

  16. Brill TB, Brush PJ, Patil DG. Thermal decomposition of energetic materials 58. Chemistry of ammonium nitrate and ammonium dinitramide near the burning surface temperature. Combust Flame. 1993;92:178–86.

    Article  CAS  Google Scholar 

  17. Oxley JC, Smith JL, Zheng W, Rogers E, Coburn MD. Thermal decomposition studies on ammonium dinitramide (ADN) and 15N and 2H isotopomers. J Phys Chem A. 1997;101:5642–52.

    Google Scholar 

  18. Vyazokin S, Wight CA. Ammonium dinitramide: kinetics and mechanism of thermal decomposition. J Phys Chem A. 1997;101:5653–8.

    Article  Google Scholar 

  19. Löbbecke S, Krause H, Pfeil A. Thermal analysis of ammonium dinitramide decomposition. Propel Explos Pyrotech. 1997;22:184–8.

    Article  Google Scholar 

  20. Kazakov AI, Rubtsov YI, Andrienko LP, Manelis GB. Kinetic of the thermal decomposition of dinitramide 3. Kinetics of the heat release during the thermal decomposition of dinitramide ammonium salt in the liquid phase. Russ Chem Bull. 1998;47:379–85.

    Article  CAS  Google Scholar 

  21. Kazakov AI, Rubtsov YI, Manelis GB. Kinetics and mechanism of thermal decomposition of dinitramide. Propellant Explos Pyrotech. 1999;24:37–42.

    Article  CAS  Google Scholar 

  22. Pavlov AN, Grebennikov VN, Nazina LD, Nazin GM, Manelis GB. Thermal decomposition of ammonium dinitramide and mechanism of anomalous decay of dinitramide salts. Russ Chem Bull. 1999;48:50–4.

    Article  CAS  Google Scholar 

  23. Tompa AS. Thermal analysis of ammonium dinitramide (ADN). Thermochim Acta. 2000;357–8:177–93.

    Article  Google Scholar 

  24. Mishra IB, Russell TP. Thermal stability of ammonium dinitramide. Thermochim Acta. 2002;384:47–56.

    Article  CAS  Google Scholar 

  25. Shmakov AG, Korobenichev OP, Bol’shova TA. Thermal decomposition of ammonium dinitramide vapor in a two-temperature flow reactor. Combust Explos Shock Waves. 2002;38:284–94.

    Article  Google Scholar 

  26. Matsunaga H, Habu H, Miyake A. Influences of aging on thermal decomposition mechanism of high performance oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;113:1387–94.

    Article  CAS  Google Scholar 

  27. Matsunaga H, Habu H, Miyake A. Thermal behavior of new oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;111:1183–8.

    Article  CAS  Google Scholar 

  28. Matsunaga H, Habu H, Miyake A. Thermal decomposition of the high-performance oxidizer ammonium dinitramide under pressure. J Therm Anal Calorim. 2014;116:1227–32.

    Article  CAS  Google Scholar 

  29. Fujisato K, Habu H, Hori K, Condensed phase behavior in the combustion of ammonium dinitramide. Propel Explos Pyrotech. 2014;39:714–22.

  30. Fujisato K, Habu H, Hori K. Role of additives in the combustion of ammonium dinitramide. Propellant Explos Pyrotech. 2014;39:518–22.

    Article  CAS  Google Scholar 

  31. Miyata Y, Hasue K. Burning characteristics of aminoguanidinium 5,5′-azobis-1H-tetrazolate/ammonium nitrate mixture—effects of particle size and composition ratio on burning rate. J Energ Matter. 2011;29:344–59.

    Article  CAS  Google Scholar 

  32. Kajiyama K, Izato Y, Miyake A. Thermal characteristics of ammonium nitrate, carbon, and copper(II) oxide mixtures. J Therm Anal Calorim. 2013;113:1475–80.

    Article  CAS  Google Scholar 

  33. Izato Y, Kajiyama K, Miyake A. Thermal decomposition mechanism of ammonium nitrate and copper(II) oxide mixtures. Sci Tech Energ Mater. 2014;75:128–33.

    Google Scholar 

  34. Ikeda K, Shiraishi Y, Date S. Burning characteristics of some azodicarbonamide/ammonium nitrate/additive mixtures. Sci Tech Energ Mater. 2014;75:59–63.

    CAS  Google Scholar 

  35. Miyata Y, Date S, Hasue K. Effect of additional copper(II) oxide on the combustion of 5-amino-1H-tetrazole and lithium perchlorate mixtures (I)—examination of the burning mechanism. Sci Tech Energ Mater. 2007;68:125–30.

    CAS  Google Scholar 

  36. Miyata Y, Date S, Hasue K. Effect of additional copper(II) oxide on the combustion of 5-amino-1H-tetrazole and lithium perchlorate mixtures (II)—thermal analyses of 5-amino-1H-tetrazole, lithium perchlorate, and copper(II) oxide. Sci Tech Energ Mater. 2007;68:131–5.

    CAS  Google Scholar 

  37. Matsunaga H, Habu H, Miyake A. Thermal decomposition mechanism of ammonium dinitramide using pyrolysate analyses. In: Proceedings of new trend in research of energetic materials, Czech Republic. p. 268–276; 2013.

  38. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci Part C. 1963;6:183–95.

    Article  Google Scholar 

  39. Addison CC, Hathaway AA. The vapour pressure of anhydrous copper nitrate, and its molecular weight in the vapour state. J Chem Soc. 1958; 3099–3106.

  40. Dyukarev SS, Morozov IV, Reshetova LN, Guz’ OV, Arkhangel’skii IV, Korenev YM, Spiridonov FM. Copper(II) nitrate ammoniates Cu(NH3)4(NO3)2 and Cu(NH3)2(NO3)2 and their thermolysis under reduced pressure. Russ J Inorg Chem. 1999;44:883–8.

    Google Scholar 

  41. Oommen C, Jain SR. Ammonium nitrate: a promising rocket propellant oxidizer. J Hazard Mater. 1999;A67:253–81.

    Article  Google Scholar 

  42. Morozov IV, Fedorova AA, Knotko AV, Valedinskaja OR, Kemnitz E. Mixed 3d-metal oxides prepared using molten ammonium nitrate. Mendeleev Commun. 2004;14:138–9.

    Article  Google Scholar 

  43. Jackson JG, Fonseca RW, Holcombe JA. Mass spectral studies of thermal decomposition of metal nitrates. Spectrochim Acta B. 1995;50:1449–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsumi Miyake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsunaga, H., Izato, Yi., Habu, H. et al. Thermal decomposition characteristics of mixtures of ammonium dinitramide and copper(II) oxide. J Therm Anal Calorim 121, 319–326 (2015). https://doi.org/10.1007/s10973-015-4645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4645-6

Keywords

Navigation