Skip to main content
Log in

A comparative study of thermal behaviors and kinetics analysis of the pyrotechnic compositions containing Mg and Al

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of this research is to analyze the thermal behavior and kinetics of the pyrotechnic compositions including Al + KClO4, Mg + KClO4, Al + Mg + KClO4, MgAl + KClO4 and Al + MgAl + KClO4 mixtures. The differential scanning calorimeter coupled with thermogravimetry analysis was employed to illustrate the reaction process of these pyrotechnic compositions. Moreover, the bomb calorimetry was utilized to compare experimental and theoretical heats of reaction. The apparent activation energy (E a), frequency factor (A), the critical ignition temperature of thermal explosion and the self-accelerating decomposition temperature (T SADT), were calculated using Kissinger approach. The results showed that the composition containing MgAl had the highest activation energy and frequency factor; however, the critical ignition temperature of their oxidation reaction was lowest value. In agreement with the theoretical value, the highest experimental heat of reaction for the composition MgAl/KClO4 corresponds to the more complete combustion of metastable MgAl as an alloying mixture of Aluminum and Magnesium with equal proportions. These results suggest that benchmark values for an optimum designation and issues pertinent to the storage and handling of pyrotechnics containing Mg, Al and KClO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schoenitz M, Dreizin EL. Structure and properties of Al–Mg mechanical alloys. J Mater Res. 2003;18:1827–36.

    Article  CAS  Google Scholar 

  2. Aly Y, Schoenitz M, Dreizin EL. Ignition and combustion of mechanically alloyed Al–Mg powders with customized particle sizes. Combust Flame. 2013;160:835–42.

    Article  CAS  Google Scholar 

  3. Shoshin YL, Mudryy RS, Dreizin EL. Preparation and characterization of energetic Al–Mg mechanical alloy powders. Combust Flame. 2002;128:259–69.

    Article  CAS  Google Scholar 

  4. Chan ML, Reed R, Ciaramitaro DA. Advances in solid propellant formulations. Solid propellant chemistry, combustion, and motor interior ballistics(A 00-36332 09-28), Reston, VA, American Institute of Aeronautics and Astronautics. Prog Astronaut Aeronaut. 2000;185:185–206.

    CAS  Google Scholar 

  5. Dreizin E. Phase changes in metal combustion. Prog Energ Combust Sci. 2000;26:57–78.

    Article  CAS  Google Scholar 

  6. Yetter RA, Risha GA, Son SF. Metal particle combustion and nanotechnology. Proc Combust Inst. 2009;32:1819–38.

    Article  CAS  Google Scholar 

  7. Wang Y, Jiang W, Zhang X, Liu H, Liu Y, Li F. Energy release characteristics of impact-initiated energetic aluminum–magnesium mechanical alloy particles with nanometer-scale structure. Thermochim Acta. 2011;512:233–9.

    Article  CAS  Google Scholar 

  8. Palaszewski B, Powell R. Launch vehicle performance using metallized propellants. J Propuls Power. 1994;10:828–33.

    Article  CAS  Google Scholar 

  9. Palaszewski B. Metallized propellants for the human exploration of Mars. J Propuls Power. 1992;8:1192–9.

    Article  CAS  Google Scholar 

  10. Singh D, Suryanarayana C, Mertus L, Chen R-H. Extended homogeneity range of intermetallic phases in mechanically alloyed Mg–Al alloys. Intermetallics. 2003;11:373–6.

    Article  CAS  Google Scholar 

  11. Schoenitz M, Dreizin EL, Shtessel E. Constant volume explosions of aerosols of metallic mechanical alloys and powder blends. J Propuls Power. 2003;19:405–12.

    Article  CAS  Google Scholar 

  12. Dreizin EL, Shoshin YL, Mudryy RS, Hoffmann VK. Constant pressure flames of aluminum and aluminum–magnesium mechanical alloy aerosols in microgravity. Combust Flame. 2002;130:381–5.

    Article  CAS  Google Scholar 

  13. Zhu C-G, Wang H-Z, Min L. Ignition temperature of magnesium powder and pyrotechnic composition. J Energ Mater. 2014;32:219–26.

    Article  CAS  Google Scholar 

  14. Stern KH. High temperature properties and thermal decomposition of inorganic salts with oxyanions. Boca Raton: CRC Press; 2000.

    Book  Google Scholar 

  15. Lee J-S, Hsu C-K, Jaw K-S. The thermal properties of KClO4 with different particle size. Thermochim Acta. 2001;367:381–5.

    Article  Google Scholar 

  16. Kang X, Zhang J, Zhang Q, Du K, Tang Y. Studies on ignition and afterburning processes of KClO4/Mg pyrotechnics heated in air. J Therm Anal Calorim. 2012;109:1333–40.

    Article  CAS  Google Scholar 

  17. Mei-shuai Z, Xiao-yan G, Rong-jie Y, Long-xin Q, Zhi-hong C. Effect of oxidizers in magnesium fuel-rich propellant for water-ramjet engine. J Propuls Technol. 2010;6:018.

    Google Scholar 

  18. Lee J-S, Hsu C-K. The DSC studies on the phase transition, decomposition and melting of potassium perchlorate with additives. Thermochim Acta. 2001;367:367–70.

    Article  Google Scholar 

  19. Furuichi R, Ishii T, Kobayashi K. Phenomenological study of the catalytic thermal decomposition of potassium perchlorate by iron(II) oxides with different preparing histories. J Therm Anal Calorim. 1974;6:305–20.

    Article  CAS  Google Scholar 

  20. Danali S, Palaiah R, Raha K. Developments in pyrotechnics (review paper). Def Sci J. 2010;60:152–8.

    Article  CAS  Google Scholar 

  21. Conkling JA, Mocella C. Chemistry of pyrotechnics: basic principles and theory. Boca Raton: CRC Press; 2010.

    Book  Google Scholar 

  22. Conkling JA. Pyrotechnics. Kirk-Othmer Encyclopedia of Chemical Technology; 1996.

  23. Pourmortazavi S, Hajimirsadeghi S, Hosseini S. Characterization of the aluminum/potassium chlorate mixtures by simultaneous TG-DTA. J Therm Anal Calorim. 2006;84:557–61.

    Article  CAS  Google Scholar 

  24. Pourmortazavi S, Fathollahi M, Hajimirsadeghi S, Hosseini S. Thermal behavior of aluminum powder and potassium perchlorate mixtures by DTA and TG. Thermochim Acta. 2006;443:129–31.

    Article  CAS  Google Scholar 

  25. Hosseini SG, Eslami A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim. 2010;101:1111–9.

    Article  CAS  Google Scholar 

  26. Ilunga K, Del Fabbro O, Yapi L, Focke WW. The effect of Si–Bi2O3 on the ignition of the Al–CuO thermite. Powder Technol. 2011;205:97–102.

    Article  CAS  Google Scholar 

  27. Dreizin EL. Metal-based reactive nanomaterials. Prog Energ Combust Sci. 2009;35:141–67.

    Article  CAS  Google Scholar 

  28. Fathollahi M, Pourmortazavi S, Hosseini S. The effect of the particle size of potassium chlorate in pyrotechnic compositions. Combust Flame. 2004;138:304–6.

    Article  CAS  Google Scholar 

  29. Wharton R, Barratt A. Observations on the reactivity of pyrotechnic compositions containing potassium chlorate and thiourea. Propell Explos Pyrot. 1993;18:77–80.

    Article  CAS  Google Scholar 

  30. Brown M. Some thermal studies on pyrotechnic compositions. J Therm Anal Calorim. 2001;65:323–34.

    Article  CAS  Google Scholar 

  31. Anandprakash K. Effect of Tammann temperature and relative humidity on lead chromate and magnesium-based compositions. Def Sci J. 2013;48:303–8.

    Article  Google Scholar 

  32. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  33. Augis J, Bennett J. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.

    Article  CAS  Google Scholar 

  34. Chrissafis K. Kinetics of thermal degradation of polymers. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  35. Barral L, Cano J, Lopez J, Lopez-Bueno I, Nogueira P, Ramirez C, et al. Thermogravimetric study of tetrafunctional/phenol novolac epoxy mixtures cured with a diamine. J Therm Anal Calorim. 1998;51:489–501.

    Article  CAS  Google Scholar 

  36. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  Google Scholar 

  37. Pickard JM. Critical ignition temperature. Thermochim Acta. 2002;392:37–40.

  38. Rong L, Binke N, Yuan W, Zhengquan Y, Rongzu H. Estimation of the critical temperature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC. J Therm Anal Calorim. 1999;58:369–73.

    Article  CAS  Google Scholar 

  39. Fathollahi M, Mohammadi B, Mohammadi J. Kinetic investigation on thermal decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nanoparticles. Fuel. 2013;104:95–100.

    Article  CAS  Google Scholar 

  40. Roduit B, Hartmann M, Folly P, Sarbach A, Brodard P, Baltensperger R. Determination of thermal hazard from DSC measurements. Investigation of self-accelerating decomposition temperature (SADT) of AIBN. J Therm Anal Calorim. 2014;117:1017–26.

    Article  CAS  Google Scholar 

  41. Liu R, Yang L, Zhou Z, Zhang T. Thermal stability and sensitivity of RDX-based aluminized explosives. J Therm Anal Calorim. 2014;115:1939–48.

    Article  CAS  Google Scholar 

  42. Tonglai Z, Rongzu H, Yi X, Fuping L. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  Google Scholar 

  43. Association NFP. Standard system for the identification of the hazards of materials for emergency response. Quincy: National Fire Protection Association; 2001.

    Google Scholar 

  44. Ando T, Fujimoto Y, Morisaki S. Analysis of differential scanning calorimetric data for reactive chemicals. J Hazard Mater. 1991;28:251–80.

    Article  CAS  Google Scholar 

  45. Ouyang D, Pan G, Guan H, Zhu C, Chen X. Effect of different additives on the thermal properties and combustion characteristics of pyrotechnic mixtures containing the KClO4/Mg–Al alloy. Thermochim Acta. 2011;513:119–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are very indebted to Research Committee of the University of Tehran due to its authorities for financial support during the tenure of which work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Behnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathollahi, M., Behnejad, H. A comparative study of thermal behaviors and kinetics analysis of the pyrotechnic compositions containing Mg and Al. J Therm Anal Calorim 120, 1483–1492 (2015). https://doi.org/10.1007/s10973-015-4433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4433-3

Keywords

Navigation