Skip to main content
Log in

Simulation study for generalized logistic function in thermal data modeling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The principal aim of the present study is to describe, analyze, and compare from a statistical standpoint the generalized logistic model with some well-known models used in the solid-state kinetics: power law, Avrami–Erofeev, and reaction order. For this purpose, synthetic conversion curves that simulate the kinetic processes were generated using the power law, Avrami–Erofeev, and reaction order models, where the Arrhenius equation was assumed in all the cases. This comprehensive simulation study allows to describe the relationship between the parameters belonging to the proposed generalized logistic model and the pointed traditional models’ parameters, and also to validate the performance of the generalized logistic model in a wide variety of cases where other methods can be applied. Performing this analysis has been necessary to employ some new statistical techniques in thermal analysis modeling as the generalized additive models, and to perform global optimization evolutionary algorithms as the differential evolution for solving the non-linear regression problem. In order to implement these techniques, R statistical software routines were developed and applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  2. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  3. Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem B. 2005;109:10073–80.

    Article  CAS  Google Scholar 

  4. Vyazovkin S. Isoconversional kinetics. In: Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier BV; 2008. p. 503–38.

    Google Scholar 

  5. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A. 1966;70:487–523.

    Article  CAS  Google Scholar 

  6. Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa Method. J Phys Chem A. 2013;117:10162–9.

    Article  CAS  Google Scholar 

  7. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  Google Scholar 

  8. Vyazovkin S, Sbirrazzuoli N. Kinetic methods to study isothermal and nonisothermal epoxy–anhydride cure. Macromol Chem Phys. 1999;200:2294–303.

    Article  CAS  Google Scholar 

  9. Fraser RDB, Suzuki E. Resolution of overlapping absorption bands by least squares procedures. Anal Chem. 1966;38(12):1770–3.

    Article  CAS  Google Scholar 

  10. Fraser RDB, Suzuki E. Resolution of overlapping bands. Functions for simulating band shapes. Anal Chem. 1969;41(1):37–9.

    Article  CAS  Google Scholar 

  11. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.

    Article  Google Scholar 

  12. Verhulst PF. Notice sur la loi que la population poursuit dans son accroissement. Corresp Math Phys. 1838;10:113–21.

    Google Scholar 

  13. Richards FJ. A flexible growth function for empirical use. J Exp Bot. 1959;10:290–300.

    Article  Google Scholar 

  14. Cao R, Naya S, Artiaga R, García A, Varela A. Logistic approach to polymer degradation in dynamic TGA. Polym Degrad Stab. 2004;85:667–74.

    Article  CAS  Google Scholar 

  15. Naya S, Cao R, de Ullibarri IL, Artiaga R, Barbadillo F, García A. Logistic mixture model versus Arrhenius for kinetic study of material degradation by dynamic thermogravimetric analysis. J Chemom. 2006;20:158–63.

    Article  CAS  Google Scholar 

  16. Barbadillo F, Fuentes A, Naya S, Cao R, Mier JL, Artiaga R. Evaluating the logistic mixture model on real and simulated TG curves. J Therm Anal Calorim. 2007;87:223–7.

    Article  CAS  Google Scholar 

  17. Artiaga R, Cao R, Naya S, González-Martín B, Mier J, García A. Separation of overlapping processes from TGA data and verification by EGA. ASTM Spec Tech Publ. 2005;2:12795.

    Google Scholar 

  18. Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A, et al. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7.

    Article  CAS  Google Scholar 

  19. López-Beceiro J, Pascual-Cosp J, Artiaga R, Tarrío-Saavedra J, Naya S. Thermal characterization of ammonium alum. J Therm Anal Calorim. 2010;104:127–30.

    Article  Google Scholar 

  20. López-Beceiro J, Gracia-Fernández C, Gómez-Barreiro S, Castro-García S, Sánchez-Andújar M, Artiaga R. Kinetic study of the low temperature transformation of Co(HCOO)3[(CH3)2NH2]. J Phys Chem C. 2012;116:1219–24.

    Article  Google Scholar 

  21. López-Beceiro J, Gracia-Fernández C, Artiaga R. A kinetic model that fits nicely isothermal and non-isothermal bulk crystallizations of polymers from the melt. Eur Polym J. 2013;49:2233–46.

    Article  Google Scholar 

  22. Wood SN. Generalized additive models: an introduction with R. London: Chapman and Hall; 2006.

    Google Scholar 

  23. Price KV. Differential evolution: a practical approach to global optimization. Berlin: Springer; 2005.

    Google Scholar 

  24. Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11:341–59.

    Article  Google Scholar 

  25. Storn R. Differential Evolution Homepage. International Computer Science Institute, University of California, Berkeley. http://www1.icsi.berkeley.edu/~storn/code.html (2013). Accessed 05 Oct 2013.

  26. Ríos-Fachal M, Tarrío-Saavedra J, López-Beceiro J, Naya S, Artiaga R. Optimizing fitting parameters in thermogravimetry. In: NATAS-2013-Proceeding; 2013.

  27. Wasserman L. All of nonparametric statistics. New York: Springer; 2006.

    Google Scholar 

  28. Cai J, Liu R. Application of Weibull 2-mixture model to describe biomass pyrolysis kinetics. Energy Fuels. 2008;22:675–8.

    Article  CAS  Google Scholar 

  29. Adnađević B, Janković B, Kolar-Anić L, Minić D. Normalized Weibull distribution function for modelling the kinetics of non-isothermal dehydration of equilibrium swollen poly(acrylic acid) hydrogel. Chem Eng J. 2007;130:11–7.

    Article  Google Scholar 

  30. Kingsland SE. Modeling nature: episodes in the history of population ecology. 2nd ed. Chicago: University of Chicago Press; 1995.

    Google Scholar 

  31. Román-Román P, Torres-Ruiz F. Modelling logistic growth by a new diffusion process: application to biological systems. Biosystems. 2012;110:9–21.

    Article  Google Scholar 

  32. Francisco-Fernández M, Tarrío-Saavedra J, Mallik A, Naya S. A comprehensive classification of wood from thermogravimetric curves. Chemom Intell Lab Syst. 2012;118:159–72.

    Article  Google Scholar 

  33. Pato-Doldán B, Sánchez-Andújar M, Gómez-Aguirre LC, Yáñez-Vilar S, Lopez-Beceiro J, Gracía-Fernandez C, et al. Near room temperature dielectric transition in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]. Phys Chem Chem Phys. 2012;14:8498–501.

    Article  Google Scholar 

  34. Tarrío-Saavedra J, Francisco-Fernández M, Naya S, López-Beceiro J, Gracia-Fernández C, Artiaga R. Wood identification using pressure DSC data: wood identification from PDSC. J Chemom. 2013;. doi:10.1002/cem.2561.

    Google Scholar 

  35. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve. Chem Cent J. 2013;7:25.

    Article  Google Scholar 

  36. López-Beceiro J, Pascual-Cosp J, Artiaga R, Tarrío-Saavedra J, Naya S. Thermal characterization of ammonium alum. J Therm Anal Calorim. 2011;104:127–30.

    Article  Google Scholar 

  37. López-Beceiro J, Gracia-Fernández C, Tarrío-Saavedra J, Gómez-Barreiro S, Artiaga R. Study of gypsum by PDSC. J Therm Anal Calorim. 2012;109:1177–83.

    Article  Google Scholar 

  38. R Development Core Team. R: a language and environment for statistical computing. Viena: R Foundation for Statistical Computing; 2009. http://www.R-project.org.

  39. Grothendieck G. nls2: non-linear regression with brute force. R package version 0.2; 2013. http://CRAN.R-project.org/package=nls2.

  40. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

    Book  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Spanish Ministry of Science and Innovation. Grant MTM2011-22392 (ERDF included).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Tarrío-Saavedra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarrío-Saavedra, J., López-Beceiro, J., Naya, S. et al. Simulation study for generalized logistic function in thermal data modeling. J Therm Anal Calorim 118, 1253–1268 (2014). https://doi.org/10.1007/s10973-014-3887-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3887-z

Keywords

Navigation