Skip to main content
Log in

Investigation on solidification conditions in functionally Si-gradient Al alloys using simulation and cooling curve analysis methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

During recent years, functionally graded alloys have been widely produced by melt processing routes to achieve advanced material properties. In this paper, the new cast-decant-cast (CDC) method has been used to produce the gradient in concentration of Si particles in cross section of final Al–Si castings. For this purpose, the hypereutectic LM28 and hypoeutectic LM25 alloys were selected for each step casting into the steel mold. Cooling curve thermal analysis and simulation methods were applied to investigate the cooling behavior of first poured LM28 alloy and improve the accuracy of CDC process by determining the curves of solid fraction and temperature profiles. The final products were studied through optical microscopy, image analysis, and Brinell hardness measurement. The results showed that the silicon concentration decreased along transition zone between two alloys by increasing the decanting time in the order of 25, 40, and 50 s. This can be due to the lower temperature of exterior LM28 alloy in semi-solid state and shorter solidification time of interior LM25 alloy. This can lead a to reduction of the diffusion rate of elemental silicon along the transition zone. The microscopic scale of transition zone between two alloys developed the maximum thickness of 438 μm and hardness value of 83 HB comparing with the hardness of 88 and 62 HB for external and internal alloys, respectively. The microscopic observations and hardness evaluations confirmed the creation of functionally Si-gradient products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials. Mater Sci Eng A. 2003;362:81–105.

    Article  Google Scholar 

  2. Mahamood RM, Akinlabi ET, Shukla M, Pityana S, editors. Functionally graded material: an overview. World Congress on Engineering: London; 2012; 3:1593–97.

  3. Reimains IE. Functionally graded materials. In: Wessel JK, editor. Handbook of advanced materials: enabling new designs. Wiley: New York; 2004. p. 465–86.

    Chapter  Google Scholar 

  4. Rodel J, Neubrand A. Research program on gradient materials in Germany. Functionally graded materials 1996. Amesterdam: Elsevier; 1997. p. 9–14.

    Book  Google Scholar 

  5. Duque NB, Melgarejo ZH, Suárez OM. Functionally graded aluminum matrix composites produced by centrifugal casting. Mater Charact. 2005;55:167–71.

    Article  CAS  Google Scholar 

  6. Gao JW, Wang CY. Modeling the solidification of functionally graded materials by centrifugal casting. Mater Sci Eng A. 2000;292:207–15.

    Article  Google Scholar 

  7. Rajan TPD, Jayakumar E, Pai BC. Developments in solidification processing of functionally graded aluminium alloys and composites by centrifugal casting technique. Trans Indian Inst Met. 2012;65(6):531–7.

    Article  CAS  Google Scholar 

  8. Rajan TPD, Pai BC. Formation of solidification microstructures in centrifugal cast functionally graded aluminium composites. Trans Indian Inst Met. 2009;62:383–9.

    Article  CAS  Google Scholar 

  9. Zhai Y, Liu C, Wang K, Zou M, Xie Y. Characteristics of two Al based functionally gradient composites reinforced by primary Si particles and Si/in situ Mg2Si particles in centrifugal casting. Trans Nonferrous Met Soc China. 2010;20:361–70.

    Article  CAS  Google Scholar 

  10. Kumar S, Subramaniya Sarma V, Murty BS. Functionally graded Al alloy matrix in-situ composites. Metall Mater Trans A. 2010;41A:242–54.

    Article  CAS  Google Scholar 

  11. Rajan TPD, Pillai RM, Pai BC. Functionally graded Al–Al3Ni in situ intermetallic composites: fabrication and microstructural characterization. J Alloys Compd. 2008;453:L4–7.

    Article  CAS  Google Scholar 

  12. Watanabe Y, Oike S. Formation mechanism of graded composition in Al–Al2Cu functionally graded materials fabricated by a centrifugal in situ method. Acta Mater. 2005;53:1631–41.

    Article  CAS  Google Scholar 

  13. Xie Y, Liu C, Zhai Y, Wang K, Ling X. Centrifugal casting processes of manufacturing in situ functionally gradient composite materials of Al–19Si–5Mg alloy. Rare Met. 2009;28:405–11.

    Article  CAS  Google Scholar 

  14. Hajjari E, Divandari M, Razavi SH, Homma T, Kamado S. Intermetallic compounds and antiphase domains in Al/Mg compound casting. Intermetallics. 2012;23:182–6.

    Article  CAS  Google Scholar 

  15. Papis KJM, Hallstedt B, Löffler JF, Uggowitzer PJ. Interface formation in aluminium–aluminium compound casting. Acta Mater. 2008;56:3036–43.

    Article  CAS  Google Scholar 

  16. Mazare L, Miranda G, Soares D, Silva FS. On the ability of producing copper-silver functionally graded alloys by using an incremental melting and solidification process. J Mater Process Technol. 2009;209:5702–10.

    Article  CAS  Google Scholar 

  17. Qin QD, Zhao YG, Cong PJ, Liang YH, Zhou W. Multi-layer functionally graded Mg2Si/Al composite produced by directional remelting and quenching process. Mater Sci Eng A. 2006;418:193–8.

    Article  Google Scholar 

  18. Qin QD, Zhao YG, Cong PJ, Liang YH, Zhou W. Functionally graded Mg2Si/Al composite produced by an electric arc remelting process. J Alloys Compd. 2006;420:121–5.

    Article  CAS  Google Scholar 

  19. Fukui Y, Okada H, Kumazawa N, Watanabe Y. Near-net-shape forming of Al–Al3Ni functionally graded material over eutectic melting temperature. Metall Mater Trans A. 2000;31A:2627–36.

    Article  CAS  Google Scholar 

  20. Li Y, Fei J, Chen W, Zhang W, Shao M. Preparation of 2024/3003 gradient materials by semi-continuous casting using double-stream-pouring technique. J Cent South Univ Technol. 2002;9:229–34.

    Article  CAS  Google Scholar 

  21. Song C-J, Xu Z-M, Li J-G. In-situ Al/Al3Ni functionally graded materials by electromagnetic separation method. Mater Sci Eng A. 2007;445–46:148–54.

    Article  Google Scholar 

  22. Sun J, Song X, Wang T, Yu Y, Sun M, Cao Z, et al. The microstructure and property of Al–Si alloy and Al–Mn alloy bimetal prepared by continuous casting. Mater Lett. 2012;67:21–3.

    Article  CAS  Google Scholar 

  23. Yamagiwa K, Watanabe Y, Matsuda K, Fukui Y, Kapranos P. Characteristics of a near-net-shape formed Al–Al3Fe eco-functionally graded material produced over its eutectic melting temperature. Mater Sci Eng A. 2006;416:80–91.

    Article  Google Scholar 

  24. Zhang Z, Li T, Yue H, Zhang J, Li J. Study on the preparation of Al–Si functionally graded materials using power ultrasonic field. Mater Des. 2009;30:851–6.

    Article  CAS  Google Scholar 

  25. Scanlan M, Browne DJ, Bates A. New casting route to novel functionally gradient light alloys. Mater Sci Eng A. 2005;413–14:66–71.

    Article  Google Scholar 

  26. Browne DJ, Scanlan M, Bates A. Functionally gradient materials via a casting process involving partial solidification. Solid State Phenom. 2008;141–43:349–54.

    Article  Google Scholar 

  27. Midson SP, Browne DJ. Casting wear-resistant functionally gradient ferrous alloys via partial solidification processing. Solid State Phenom. 2013;192–93:506–11.

    Google Scholar 

  28. Dao V, Zhao S, Zhang Q. Numerical simulation of a thixocasting process for AISI420 stainless steel air-turbine blade. Trans Nonferrous Met Soc China. 2010;20:926–30.

    Article  Google Scholar 

  29. Farahany S, Ourdjini A, Idris MH, Shabestari SG. Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy. J Therm Anal Calorim. 2013;114:705–17.

    Article  CAS  Google Scholar 

  30. Gibbs JW, Mendez PF. Solid fraction measurement using equation-based cooling curve analysis. Scr Mater. 2008;58:699–702.

    Article  CAS  Google Scholar 

  31. Hosseini VA, Shabestari SG, Gholizadeh R. Study on the effect of cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique. Mater Des. 2013;50:7–14.

    Article  CAS  Google Scholar 

  32. Malekan M, Shabestari SG. Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2011;103:453–8.

    Article  CAS  Google Scholar 

  33. Rajan TPD, Narayan Prabhu K, Pillai RM, Pari PC. Solidification and casting/mould interfacial heat transfer characteristics of aluminum matrix composites. Compos Sci Technol. 2007;67:70–8.

    Article  CAS  Google Scholar 

  34. Spinelli JE, Cheung N, Goulart PR, Quaresma JMV, Garcia A. Design of mechanical properties of Al-alloys chill castings based on the metal/mold interfacial heat transfer coefficient. Int J Therm Sci. 2012;51:145–54.

    Article  CAS  Google Scholar 

  35. Vijayaram TR, Sulaiman S, Hamouda AMS, Ahmad MHM. Numerical simulation of casting solidification in permanent metallic molds. J Mater Process Technol. 2006;178:29–33.

    Article  Google Scholar 

  36. Zhao H, Bai Y, Ouyang X, Dong P. Simulation of mold filling and prediction of gas entrapment on practical high pressure die castings. Trans Nonferrous Met Soc China. 2010;20:2064–70.

    Article  CAS  Google Scholar 

  37. Shabestari SG, Gholizadeh R. Assessment of intermetallic compound formation during solidification of Al-Si piston alloys through thermal analysis technique. Mater Sci Technol. 2012;28:156–64.

    Article  CAS  Google Scholar 

  38. Min Z, Xiangfa L, Hongshang D, Xiangjun L. Al–Si–P master alloy and its modification and refinement performance on Al–Si alloys. Rare Met. 2009;28:412–7.

    Article  Google Scholar 

  39. Tzimas E, Zavaliangos A. Materials selection for semisolid processing. Mater Manuf Process. 1999;14:217–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Shabestari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rikhtegar, F., Shabestari, S.G. Investigation on solidification conditions in functionally Si-gradient Al alloys using simulation and cooling curve analysis methods. J Therm Anal Calorim 117, 721–729 (2014). https://doi.org/10.1007/s10973-014-3767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3767-6

Keywords

Navigation