Skip to main content
Log in

Synthesis, characterization and thermal stability of new dumbbell-shaped isobutyl-substituted POSSs linked by aromatic bridges

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Five new dumbbell-shaped polyhedral oligomeric silsesquioxanes (POSSs), in which two identical silicon cages R7(SiO1.5)8 (with R = isobutyl), linked to various aromatic bridges (Ar, Ar–Ar, Ar–O–Ar, Ar–S–Ar and Ar–SO2–Ar, where Ar = p-C6H4) were prepared through a literature method opportunely modified by us to make easier preparation and increase yield, which was higher than 70 % in all cases. The obtained products were the expected ones, as supported by the results of elemental analysis and 1H NMR spectra. Their resistance to the thermal degradation in both flowing nitrogen and static air atmosphere was checked by degrading samples at 10 °C min−1 and determining temperatures at 5 % mass loss (T 5%) and residues at 700 °C. The T 5% values in air were lower than the corresponding ones in nitrogen, but the trend among the various POSSs investigated was the same in both used atmospheres, with the most high value for the compound having the Ar–O–Ar aromatic bridge. The residues at 700 °C in air of the compounds having not hetero-atoms (O or S) in the aromatic bridge were higher than those in nitrogen, whilst no substantial difference was observed for the other ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harrison PG. Silicate cages: precursors to new materials. J Organomet Chem. 1997;547:141–7.

    Article  Google Scholar 

  2. Pielichowski K, Njuguna J, Janowski B, Pielichowski J. Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. Adv Polym Sci. 2006;201:225–96.

    Article  CAS  Google Scholar 

  3. Baney RH, Itoh M, Sakakibara S, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.

    Article  CAS  Google Scholar 

  4. Kickelbick G. Silsesquioxanes. Struct Bond. 2013;. doi:10.1007/430_2013_108.

    Google Scholar 

  5. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440(1):36–42.

    Article  CAS  Google Scholar 

  6. Shea KJ, Loy DA. Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials. Chem Mater. 2001;13:3306–19.

    Article  CAS  Google Scholar 

  7. Jian KH, Qun CZ, Shu LG. Bridged polyhedral oligomeric silsesquioxane (POSS): a potential member of silsesquioxanes. Chin Chem Lett. 2012;23:181–4.

    Article  Google Scholar 

  8. Blanco I, Abate L, Bottino FA. Synthesis and thermal properties of new dumbbell-shaped isobutyl-substituted POSSs linked by aliphatic bridges. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3487-3.

    Google Scholar 

  9. Blanco I, Abate L, Bottino FA, Bottino P, Chiacchio MA. Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nanoparticles. J Therm Anal Calorim. 2012;107:1083–91.

    Article  CAS  Google Scholar 

  10. Blanco I, Abate L, Bottino FA, Bottino P. Hepta isobutyl polyhedral oligomeric silsesquioxanes (hib-POSS): a thermal degradation study. J Therm Anal Calorim. 2012;108:807–15.

    Article  CAS  Google Scholar 

  11. Hunks WJ, Ozin GA. Periodic mesoporous phenylenesilicas with ether or sulfide hinge groups—a new class of PMOs with ligand channels. Chem Commun. 2004;21:2426–7.

    Article  Google Scholar 

  12. Lichtenhan JD, Schwab JJ, Reinerth W, Carr MJ, An YZ, Feher FJ. Process for the formation of polyhedral oligomeric silsesquioxanes, US Patent WO 01/10871 A1 (2001).

  13. Abate L, Badea E, Blanco I, Della Gatta G. Heat capacities and enthalpies of solid–solid transitions and fusion of a series of eleven primary alkylamides by differential scanning calorimetry. J Chem Eng Data. 2008;53(4):959–65.

    Article  CAS  Google Scholar 

  14. Lichtenhan JD, Schwab JJ, An YZ, Liu Q, Haddad TS. Process for the functionalization of polyhedral oligomeric silsesquioxanes, US Patent US 2003/0055193 A1 (2003).

  15. Abate L, Blanco I, Motta O, Pollicino A, Recca A. The isothermal degradation of some polyetherketones: a comparative kinetic study between long-term and short-term experiments. Polym Degrad Stab. 2002;75:465–71.

    Article  CAS  Google Scholar 

  16. Abate L, Blanco I, Orestano A, Pollicino A, Recca A. Kinetics of the isothermal degradation of model polymers containing ether, ketone and sulfone groups. Polym Degrad Stab. 2005;87:271–8.

    Article  CAS  Google Scholar 

  17. Blanco I, Siracusa V. Kinetic study of the thermal and thermo-oxidative degradations 4 of polylactide-modified films for food packaging. J Therm Anal Calorim. 2013;112:1171–7.

    Article  CAS  Google Scholar 

  18. Blanco I, Cicala G, Latteri A, Mamo A, Recca A. Thermal and thermo-oxidative degradations of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/copoly(aryl ether sulfone) P(ESES-co-EES) block copolymers: a kinetic study. J Therm Anal Calorim. 2013;112:375–81.

    Article  CAS  Google Scholar 

  19. Blanco I, Abate L, Bottino FA. Variously substituted phenyl hepta cyclopentyl: polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites. The influence of substituents on the thermal stability. J Therm Anal Calorim. 2013;112:421–8.

    Article  CAS  Google Scholar 

  20. Chartoff RP. Thermoplastic polymers. In: Turi A, editor. Thermal characterization of polymeric materials, vol. 1. 2nd ed. San Diego: Academic Press; 1997. p. 688–93.

    Google Scholar 

  21. Orita H, Kondoh H, Nozoye H. Decomposition of saturated hydrocarbons adsorbed on Ni(755): comparison of decomposition starting temperatures among cyclic and straight-chain hydrocarbons. J Phys Chem (B). 2000;104:8692–703.

    Article  CAS  Google Scholar 

  22. Whitten KW, Davis RE, Peck L. General chemistry. 7th ed. Hampshire: Thomson Brooks/Cole; 2004.

    Google Scholar 

  23. Bruinsma OSL, Geertsma RS, Bank P, Moulijn JA. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor. 1. Benzene and derivatives. Fuel. 1988;67(3):327–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Blanco.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, I., Abate, L., Bottino, F.A. et al. Synthesis, characterization and thermal stability of new dumbbell-shaped isobutyl-substituted POSSs linked by aromatic bridges. J Therm Anal Calorim 117, 243–250 (2014). https://doi.org/10.1007/s10973-014-3641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3641-6

Keywords

Navigation