Skip to main content
Log in

Study on the structure and reactivity of COREX coal

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

COREX is the primary process in the current smelting reduction method. The process has strict coal quality standards. Combustion processes of coal used in the COREX operating system were analyzed using a synchronous thermogravimetric analyzer combined with a mass spectrometer. The microcosmic structure and macerals were observed by an electronic scanning microscope. The qualitative and quantitative determinations of oxygen functional groups, such as phenolic hydroxyl, carboxyl, carbonyl, and methoxy groups were detected by the Fourier Transform Infrared spectrometer (FT-IR) and through chemical analysis methods. In addition, the evolution of the chemical structure and transformation mechanism of organic oxygen functional groups during COREX coal combustion have been thoroughly investigated. This study proposes a new coal-requirement index system and coal blending method, which will increase the expansion of coal selection and decrease the overall usage of coal during COREX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

T 0 :

Starting temperature of combustion (°C)

T s :

Coal ignition temperature (°C)

T f :

Maximum mass loss velocity temperature (°C)

T e :

Weightlessness ending temperature (°C)

T 1 :

Ending temperature of combustion (°C)

Δm :

Mass loss fraction

References

  1. Gudennau HW, Wu K, Stefan N. Formation and effect of slag foaming in smelting reduction. Steel Res. 1992;63:512–25.

    Google Scholar 

  2. Eberle A, Siuka D, Bhm C, Schiffer W. Current status of COREX technology and development. Iron Steel. 2003;38:68–71.

    Google Scholar 

  3. Zhou YS, Li GW. Investigation on coordination development of iron and steel works with city construction and smelting reduction new technologies. China Met. 2004;11:19–23.

    Google Scholar 

  4. Chen BQ, Zhang BQ, Zhou YS. COREX smelting reduction ironmaking technology. Iron Steel. 1998;33:10–3.

    CAS  Google Scholar 

  5. Hao SL, Xu HF, Li ZY, Zhang Q, Lin JJ. Study on the characteristics in shaft furnace of COREX-3000 process. In: Baosteel Biennial Academic Conference, 2008. p. 102–7.

  6. Eichberger E, Freydorfer H, Brauer F, Holaschke P. First operational results of the COREX plant at Jindal Vijayanagar steel. Met Plant Technol Int. 2000;23:56–60.

    Google Scholar 

  7. Ziebik A, Lot G, Fechner R. Process and system analysis of COREX technology. In: Proceedings of ECOS’99 conference, Tokyo, Japan; 1999.

  8. Cao XR, Zhang BH, Jia GL, Yang HB, Zhang T, Peng HG. Research on combustion behavior of powdered coal injection in COREX smelting-gasifier. Iron Steel Vanadium Titanium. 2008;29:6–9.

    CAS  Google Scholar 

  9. Guo L, Fang J, Zhao L, Liu PX. Selection of smelting coal for COREX process. South Met. 2006;152:13–5.

    Google Scholar 

  10. Zheng FG, Zhang T, Wang SY, Xie KC. Concept of supramolecular structure of coal and its research approach, methodology. J Chin Coal Soc. 2005;30:85–9.

    Google Scholar 

  11. Xiang J, Hu S, Sun LS, Xu MH, Li PS, Su S, Sun XX. Evolution of carbon and oxygen functional groups during coal combustion. J Chem Ind Eng (China). 2006;57:2180–5.

    CAS  Google Scholar 

  12. Takagi H, Isoda T, Kusakabe K, Morooka S. Relationship between pyrolysis reactivity and aromatic structure of coal. Energy Fuels. 2000;14:646–53.

    Article  CAS  Google Scholar 

  13. Yu JS. Coal chemistry. Beijing: Metallurgical Industry Press; 2008.

    Google Scholar 

  14. Li CZ. Advances in the science of Victorian brown coal. Singapore: Elsevier; 2004.

    Google Scholar 

  15. Schafer HNS. Carboxyl groups and ion exchange in low-rank coals. Fuel. 1970;49:197–213.

    Article  CAS  Google Scholar 

  16. Schafer HNS. Determination of the total acidity of low-rank coals. Fuel. 1970;49:271–80.

    Article  CAS  Google Scholar 

  17. Schafer HNS. Determination of carboxyl groups in low-rank coals. Fuel. 1984;63:723–6.

    Article  CAS  Google Scholar 

  18. Schafer HNS, Wornat MJ. Determination of carboxyl groups in Yallourn brown coals. Fuel. 1990;69:1456–8.

    Article  CAS  Google Scholar 

  19. KrÖger C, Darsow G, Fuhr K. Physikalisch-chemische eigenschaften von braunkohlen und braunkohlenkomponenten. V. Die carbonylgruppen und ather sauerstoff Bestimmung. ErdÖl und Kohle Erdgas Petrochemie 1965;18:701–10.

  20. Painter PC, Starsinic M, Squires E, Davis AA. Concerning the 1600 cm−1 region in the IR-spectrum of coal. Fuel. 1983;62:742–4.

    Article  CAS  Google Scholar 

  21. Lis GP, Mastalerz M, Schimmelmann A. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black. Org Geochem. 2005;36:1533–52.

    Article  CAS  Google Scholar 

  22. Starsinic M, Otake Y, Walker PL, Painter PC. Application of FT-IR spectroscopy to the determination of COOH– groups in coal. Fuel. 1984;63:1002–7.

    Article  CAS  Google Scholar 

  23. Painter PC, Snyder RW, Starsinic M, Coleman MM, Kuehn DW, Davis AA. Concerning the application of FT-IR to the study of coal-a critical-assessment of band assignments and the application of spectral-analysis programs. Appl Spectrosc. 1981;35:475–85.

    Article  CAS  Google Scholar 

  24. Rzaączyñska Z, Kula A, Sienkiexicz-Gromiuk J, Szybiak A. Synthesis, spectroscopic and thermal studies of 2,3-naphthalenedicarboxylates of rare earth elements. J Therm Anal Calorim. 2011;103:275–81.

    Article  Google Scholar 

  25. Mariappan M, Madhurambal G, Ravindran B, Mojumdar SC. Thermal, FTIR and microhardness studies of bisthiourea-urea single crystal. J Therm Anal Calorim. 2011;104:915–21.

    Article  CAS  Google Scholar 

  26. Pacewska B, Wiliñska I, Nowacka M. Studies on the influence of different fly ashes and Portland cement on early hydration of calcium aluminate cement. J Therm Anal Calorim. 2011;106:859–68.

    Article  CAS  Google Scholar 

  27. Szychowski D, Pacewska B, Makomaski G, Zieliñski J, Ciesiñska W, Brzozowska T. Adsorption and DSC study of mineral-carbon sorbents obtained from coal tar pitch-polymer compositions. J Therm Anal Calorim. 2012;107:893–900.

    Article  CAS  Google Scholar 

  28. Herzog H. What future for carbon capture and sequestration? Environ Sci Technol. 2001;35:148–53.

    Article  Google Scholar 

  29. Hefczyc B, Siudyga T, Zawadiak J, Mianowski A. Analysis of the thermal decomposition of azo-peroxyesters by Arrhenius-type and three-parameter equations. J Therm Anal Calorim. 2011;105:981–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 50934007) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, X., Zhang, X., Yang, M. et al. Study on the structure and reactivity of COREX coal. J Therm Anal Calorim 113, 693–701 (2013). https://doi.org/10.1007/s10973-012-2782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2782-8

Keywords

Navigation