Skip to main content
Log in

Solid-state synthesis and heat capacity measurements of ceramic compounds LiAlSiO4, LiAlSi2O6, LiAlSi3O8, and LiAlSi4O10

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Number of lithium-based oxide ceramics in Li–Al–Si–O system were synthesized by solid-state reaction route using Li2CO3, Al2O3, and SiO2. The progress of the reaction was monitored using thermogravimetry. A model-free approach was employed to fit the temperature versus mass loss data. Heat capacities were measured as a function of temperature using differential scanning calorimetry. Variation of lithium/silicon ratio resulted in change in heat capacity and average crystallite size in each compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnson CE, Kummerer KR, Roth E. Ceramic breeder materials. J Nucl Mater. 1988;155–157:188–201.

    Article  Google Scholar 

  2. Rakshit SK, Jat RA, Naik YP, Parida SC, Singh Z, Sen BK. Specific heats of ternary oxides in Li–U(VI)–O system. Thermochim Acta. 2009;490(1–2):60–3.

    Article  CAS  Google Scholar 

  3. Rakshit SK, Parida SC, Naik YP, Rao TVV, Bamankar YR, Mukerjee SK, Singh Z, Sen BK. Heat capacity measurement of some breeder materials. Proceedings of the symposium on nuclear and radiochemistry (NUCAR-2009) held at Mithibai College, Mumbai, Jan 7–10, (2009),267–268.

  4. Naik YP, Parida SC, Rakshit SK, Singh Z, Sen BK. Specific heat capacities of ternary oxides in the Li–U(VI)–O system. Proceedings of the 16th National symposium on thermal analysis, (THERMANS-2008) held at IGCAR, Kalpakkam, Feb 6–8 (2008).

  5. Rakshit SK, Naik YP, Parida SC, Dash S, Singh Z, Sen BK, Venugopal V. Synergistic use of Knudsen effusion quadrupole mass spectrometry, solid-state galvanic cell and differential scanning calorimetry for thermodynamic studies on lithium aluminates. J Solid State Chem. 2008;181:1402–12.

    Article  CAS  Google Scholar 

  6. Rakshit SK, Parida SC, Naik YP, Chaudhary ZS, Venugopal V. Thermodynamic studies on lithium ferrites. J Solid State Chem. 2011;184(5):1186–94.

    Article  CAS  Google Scholar 

  7. Karmakar B, Kundu P, Jana S, Dwivedi RN. Crystallization kinetics and mechanisms of low-expansion lithium-alumino silicate glass ceramics by dilatometry. J Am Ceram Soc. 2002;85(10):2572–4.

    Article  CAS  Google Scholar 

  8. Noda K, Billone M, Dienst W, Flament T, Lorenzetio T, Roux N. Summary report for the ITER specialists Meeting on Blanket Materials Data Base, Garching, 7–9 Feb (1990).

  9. Riello P, Canton P, Comelato N, Polizi S, Verita M, Fagherazzi G, Hofmeister H. Nucleation and crystallization behavior of glass ceramic material in Li2O–Al2O3–SiO2 system. J Non-Cryst Solids. 2001;288(2001):127.

    Article  CAS  Google Scholar 

  10. Chatterjee M, Naskar MK. Sol–Gel synthesis of lithium aluminum silicate powders: the effect of silica source. Ceram Int. 2006;32:623–63.

    Article  CAS  Google Scholar 

  11. Arvind A, Kumar R, Deo MN, Shrikhande VK, Kothiyal GP. Preparation, structural and thermo-mechanical properties of lithium aluminum silicate glass–ceramics. Ceram Int. 2009;35:1661–6.

    Article  CAS  Google Scholar 

  12. Johnson CE, Hollenberg GW, Roux N, Watanabe H. Current experimental activities for solid breeder development. Fusion Eng Des. 1989;8:143–53.

    Article  Google Scholar 

  13. Rocherulle J. Nucleation and growth of a lithium alumino silicate glass studied by differential thermal analysis. J Mater Res Bull. 2000;35:2353–61.

    Article  CAS  Google Scholar 

  14. Donald IW. Crystallization kinetics of a lithium zinc silicate glass studied by DTA and DSC. J Non-Crystal Solids. 2004;345–346:120–6.

    Article  Google Scholar 

  15. Dickinson CF, Heal GR. Solid liquid diffusion controlled reaction equations. Thermochim Acta. 1999;340–341:89–103.

    Article  Google Scholar 

  16. Doğan F, Topallar H, Kaya I, Yürekli M. The effect of the oxidant used during polymerization on the solid-state decomposition kinetics of poly (4-methyl catechol) J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2517-x.

  17. Huang J, Su P, Wu W, Li Y, Wu X, Tao L. Preparation of nanocrystalline BiFeO3 and kinetics of thermal process of precursor. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2524-y.

  18. Barin I. Thermochemical data of pure substances, Vol. I & II 3rd ed., VCH Publishers, New York (1995).

Download references

Acknowledgements

Authors are thankful to Dr. K. L. Ramkumar, Director RC & I Group, and Dr. S. K. Aggarwal, Associated director, RC and I Group, for support, time to time help and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahamad, L., Rakshit, S.K., Parida, S.C. et al. Solid-state synthesis and heat capacity measurements of ceramic compounds LiAlSiO4, LiAlSi2O6, LiAlSi3O8, and LiAlSi4O10 . J Therm Anal Calorim 112, 17–23 (2013). https://doi.org/10.1007/s10973-012-2691-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2691-x

Keywords

Navigation