Skip to main content
Log in

Pyrolysis study of hydrophobic tholins By TG-MS, TG, DTA and DSC methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study presents the thermogravimetry (TG) of hydrophobic tholins, obtained from different simulation experiments of prebiotic synthesis carried out in a CH4/N2/H2 atmosphere with spark discharge activation of aqueous aerosols and liquid water. Differential thermal analysis and differential scanning calorimetry were also used to evaluate the thermal behaviour of these complex organic compounds that could play an important role in prebiotic chemistry. A coupled thermogravimetry-mass spectrometry system allowed us to analyse the principal volatile thermal decomposition and fragmentation products of the hydrophobic tholins under dynamic conditions and an inert atmosphere. During their thermal degradation, which occurs in two stages, a wide variety of hydrocarbon products including methane, vinyl monomers (such as ethylene and propylene), acetylene, oligomers, and some other unknown compounds are found. Besides, a thermally stable structure is present (graphitic structure) in these particular organic substances. Finally, data collected from TG experiments in an oxidative atmosphere showed significant differences at temperatures above 240 °C. According to these results, the different techniques of thermal analysis here applied have proved to be an adequate methodology for the study and characterization of these complex systems, structures of which remain controversial even in these days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sagan C, Khare BN, Thompson WR, McDonald GD, Wing MR, Bada JL, Vo-Dinh T, Arakawa ET. Polycyclic aromatic hydrocarbon in the atmosphere of Titan and Jupiter. Astrophys J. 1993;414:399–405.

    Article  CAS  Google Scholar 

  2. Sagan C, Khare BN. Tholins: organic chemistry of interstellar grains and gas. Nature. 1979;277:102–7.

    Article  CAS  Google Scholar 

  3. Ruiz-Bermejo M, Rivas LA, Palacín A, Menor-Salván C, Osuna-Esteban S. Prebiotic synthesis of protobiopolymers under alkaline ocean conditions. Origin Life Evol Biosph. 2011;41:331–45.

    Article  CAS  Google Scholar 

  4. Koike T, Kaneko T, Kobayashi K, Miyakawa S, Takano Y. Formation of organic compounds from simulated Titan atmosphere: perspectives of the Cassini mission. Biol Sci Space. 2003;17:188–9.

    Google Scholar 

  5. McDonald GN, Thompson WR, Heinrich M, Khare BN, Sagan C. Chemical investigation of Titan and Triton tholins. Icarus. 1994;108:137–45.

    Article  CAS  Google Scholar 

  6. McDonald GN, Khare BN, Thompson WR, Sagan C. CH4/NH3/H2O spark tholin: chemical analysis and interaction with jovian aqueous clouds. Icarus. 1991;94:354–67.

    Article  CAS  Google Scholar 

  7. Khare BN, Sagan C, Ogino H, Nagy B, Er C, Schram KH, Arakawa ET. Amino acids derived from Titan tholins. Icarus. 1986;68:176–84.

    Article  CAS  Google Scholar 

  8. Imanaka H, Khare BN, Elsila JE, Bakes ELO, McKay CP, Cruikshank DP, Sugita S, Matsui T, Zare RN. Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus. 2004;168:344–66.

    Article  CAS  Google Scholar 

  9. Coll P, Coscia D, Smith N, Gazeau M-C, Ramírez SI, Cernogora G, Israel G, Raulin F. Experimental laboratory simulations of Titan’s atmosphere: aerosol and gas phase. Planet Space Sci. 1999;47:1331–40.

    Article  CAS  Google Scholar 

  10. Coll P, Coscia D, Smith N, Gazeau M-C, Guez L, Raulin F. Review and latest results of laboratory investigations of Titan’s aerosols. Origins Life Evol Biosph. 1998;28:195–213.

    Article  CAS  Google Scholar 

  11. Lebonnois S, Bakes ELO, McKay CP. Transition from gaseous compounds to aerosols in Titan’s atmosphere. Icarus. 2002;159:505–17.

    Article  CAS  Google Scholar 

  12. Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S, Veintemillas-Verdaguer S. Prebiotic microreactors: a synthesis of purines and dihydroxy compounds in aqueous aerosol. Origins Life Evol Biosph. 2007;37:123–42.

    Article  CAS  Google Scholar 

  13. Ruiz-Bermejo M, Menor-Salván C, Mateo-Martí E, Osuna-Esteban S, Martín-Gago JA, Veintemillas-Verdaguer S. CH4/N2/H2-Spark hydrophylic tholins: a systematic approach to the characterisation of tholins. Icarus. 2008;198:232–41.

    Article  CAS  Google Scholar 

  14. Ruiz-Bermejo M, Menor-Salván C, de la Fuente JL, Mateo-Martí E, Osuna-Esteban S, Martín-Gago JA, Veintemillas-Verdaguer S. CH4/N2/H2-Spark hydrophobic tholins: a systematic approach to the characterisation of tholins Part II. Icarus. 2009;204:672–80.

    Article  CAS  Google Scholar 

  15. Cataldo F, Lilla E, Ursini O, Angelini G. TGA-FT-IR Study of pyrolysis of poly(hydrogen cyanide) synthesized from thermal decomposition of formamide. Implication in cometary emissions. J Anal Appl Pyrolysis. 2010;87:34–44.

    Article  CAS  Google Scholar 

  16. De la Fuente JL, Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S. Thermal characterization of HCN polymers by TG-MS, TG, DTA and DSC methods. Polym Degrad Stab. 2011;96:943–8.

    Article  Google Scholar 

  17. Warrington SB. Thermal analysis and calorimetry. In: Günzler H, Willimas A, editors. Handbook of analytical techniques. Weinheim: Wiley-VCH Verlag GmbH; 2001. p. 833–4.

    Google Scholar 

  18. Warrington SB. Evolved gas analysis. In: Charsley EL, Warrington SB, editors. Thermal analysis-techniques and applications. London: Royal Society of Chemistry; 1992.

    Google Scholar 

  19. Holdiness MR. Evolved gas analysis by mass spectrometry: a review. Themochim Acta. 1984;75:361–99.

    Article  CAS  Google Scholar 

  20. Szekely G, Nebuloni M, Zerilli LF. Thermal analysis-mass spectrometry coupling and its applications. Themochim Acta. 1992;196:511–32.

    Article  CAS  Google Scholar 

  21. Xie W, Pan W-P. Thermal characterization of materials using evolved gas analysis. J Therm Anal Calorim. 2001;65:669–85.

    Article  CAS  Google Scholar 

  22. Clarke DW, Ferris JP. Titan haze: structure and properties of cyanoacetylene and cyanoacetylene–acetylene photopolymers. Icarus. 1997;127:158–72.

    Article  CAS  Google Scholar 

  23. McGuigan M, Waite JH, Imanaka H, Sacks RD. Analysis of Titan tholin pyrolysis products by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A. 2006;1132:280–8.

    Article  CAS  Google Scholar 

  24. Takano Y, Tsuboi T, Kaneko T, Kobayashi K, Marumo K. Pyrolysis of high-molecular-weight complex organics synthesized from a simulated interstellar gas mixture irradiated with 3 MeV proton beam. Bull Chem Soc Jpn. 2004;77:779–83.

    Article  CAS  Google Scholar 

  25. Pietrogrande MC, Coll P, Sternberg R, Szopa C, Navarro-González R, Vidal-Madjar C, Dondi F. Analysis of complex mixtures recovered from space missions. Statistical approach to the study of Titan atmosphere analogues (tholins). J Chromatogr A. 2001;939:69–77.

    Article  CAS  Google Scholar 

  26. Ehrenfreund P, Boon JJ, Commandeur J, Sagan C, Thompson WR, Khare BN. Analytical pyrolysis experiments of Titan aerosol analogues in preparation for the Cassini Huygens mission. Adv Space Res. 1995;15:335–42.

    Article  CAS  Google Scholar 

  27. Khare BN, Sagan C, Thompson WR, Arakawa ET, Suits F, Callcott TA, Williams MW, Shrader S, Ogino H, Willingham TO, Nagy B. The organic aerosols of Titan. Adv Space Res. 1984;12:59–68.

    Article  Google Scholar 

Download references

Acknowledgements

The authors have used the research facilities of the Centro de Astrobiología (CAB) and have been supported by the Instituto Nacional de Técnica Aeroespacial ‘Esteban Terradas’ (INTA) and the project AYA2009-13920-C02-01 of the Ministerio de Ciencia e Innovación (Spain). The authors thank S. Veintemillas from ICMM (Instituto de Ciencia de Materiales de Madrid. CSIC) for his useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. de la Fuente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Fuente, J.L., Ruiz-Bermejo, M., Menor-Salván, C. et al. Pyrolysis study of hydrophobic tholins By TG-MS, TG, DTA and DSC methods. J Therm Anal Calorim 111, 1699–1706 (2013). https://doi.org/10.1007/s10973-011-2141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2141-1

Keywords

Navigation