Skip to main content
Log in

Exploring antibiotic resistance based on enzyme hydrolysis by microcalorimetry

Part III. Determination of thermokinetic parameters of cefazolin hydrolysis with metallo-β-lactamase CcrA

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In an effort to understand the reactions of antibiotics hydrolysis with metallo-β-lactamases (MβLs), the thermokinetic parameters of cefazolin hydrolysis with B1 subclass MβL CcrA from Bacteroides fragilis were determined by microcalorimetric method. The values of activation free energy \( \Updelta G_{ \ne }^{\theta } \) are 88.032 ± 0.038, 89.075 ± 0.025, 90.095 ± 0.034, and 91.261 ± 0.044 kJ mol−1 at 293.15, 298.15, 303.15, and 308.15 K, respectively, the activation enthalpy \( \Updelta H_{ \ne }^{\theta } \) is 25.278 ± 0.005 kJ mol−1, the activation entropy \( \Updelta S_{ \ne }^{\theta } \) is −213.99 ± 0.14 J mol−1 K−1, the apparent activation energy E is 27.776 kJ mol−1, and the reaction order is 1.4. The results indicated that the cefazolin hydrolysis with CcrA is an exothermic and spontaneous reaction. An association between the thermokinetic and kinetic parameters was revealed, which is that the catalytic constant K cat increase with increase in \( \Updelta H_{ \ne }^{\theta } \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Wang Z, Fast W, Valentine AM, Benkovic SJ. Metallo-β-lactamase: structure and mechanism. Curr Opin Chem Biol. 1999;3(5):614–22.

    Article  CAS  Google Scholar 

  2. Krishna B. New Delhi metallo-β-lactamases: a wake-up call for microbiologists. Indian Journal of Medical Microbiology. 2010;28(3):265–6.

    Article  CAS  Google Scholar 

  3. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infectious Diseases. 2010;10(9):597–602.

    Article  CAS  Google Scholar 

  4. Anzellotti A, Farrell N. Zinc metalloproteins as medicinal targets. Chem Soc Rev. 2008;37(8):1629–51.

    Article  CAS  Google Scholar 

  5. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325:1089–93.

    Article  CAS  Google Scholar 

  6. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76.

    Article  CAS  Google Scholar 

  7. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frere JM. Standard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother. 2001;45(3):660–3.

    Article  CAS  Google Scholar 

  8. Concha NO, Rasmussen BA, Bush K, Herzberg O. Crystal structure of the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis. Structure. 1996;4:823–36.

    Article  CAS  Google Scholar 

  9. Rasmussen BA, Gluzman Y, Tally FP. Cloning and sequencing of the class B β-Lactamase gene (CcrA) from bacteroides fragilis TAL3636. Antimicrob Agents Chemother. 1990;34(8):1590–2.

    Article  CAS  Google Scholar 

  10. Carfi A, Duee E, Paul-Soto R, Galleni M, Frere JM, Dideberg O. X-ray structure of the ZnII β-Lactamase from bacteroides fragilis in an orthorhombic crystal form. Acta Cry. 1998;54:47–57.

    Google Scholar 

  11. Yanchak MP, Taylor RA, Crowder MW. Mutational analysis of metallo-β-lactamase CcrA from bacteroides fragilis. Biochemistry. 2000;39:11330–9.

    Article  CAS  Google Scholar 

  12. LeBlond C, Wang J, Larsen RD, Orella CJ, Forman AL, Landau RN, Laquidara J, Sowa JR, Blackmond DG, Sun YK. Reaction calorimetry as an in situ kinetic tool for characterizing complex reactions. Thermochimica Acta. 1996;289:189–207.

    Article  CAS  Google Scholar 

  13. Zhao YL, Wang JB, Zhang P, Shan LM, Li RS, Xiao XH. Microcalorimetric study of the opposing effects of ginsenosides Rg1 and Rb1 on the growth of mice splenic lymphocytes. J Therm Anal Calorim. 2011;104:357–63.

    Article  CAS  Google Scholar 

  14. Yang LN, Sun LX, Xu F, Zhang J, Zhao JN, Zhao ZB, Song CG, Wu RH, Ozao R. Inhibitory study of two cephalosporins on E. coli by microcalorimetry. J Therm Anal Calorim. 2010;100:589–92.

    Article  CAS  Google Scholar 

  15. Kong W, Li Z, Xiao X, Zhao Y, Zhang P. Activity of berberine on Shigella dysenteriae investigated by microcalorimetry and multivariate analysis. J Therm Anal Calorim. 2010;102:331–6.

    Article  CAS  Google Scholar 

  16. Zhao Y, Yan D, Wang J, Zhang P, Xiao X. Anti-fungal effect of berberine on Candida albicans by microcalorimetry with correspondence analysis. J Therm Anal Calorim. 2010;102:49–55.

    Article  CAS  Google Scholar 

  17. Gao HZ, Yang Q, Yan XY, Wang ZJ, Feng JL, Yang X, Gao SL, Fei L, Cheng X, Jia C, Yang KW. Exploring antibiotic resistant mechanism by microcalorimetry: determination of thermokinetic parameters of metallo-β-lactamase L1 catalyzing penicillin G hydrolysis. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1362-7.

  18. Yang X, Feng L, Xu KZ, Gao HZ, Jia C, Liu CC, Xiao JM, Zhai L, Zhou LS, Yang KW. Exploring antibiotic resistant mechanism by microcalorimetry II: determination of thermokinetic parameters of imipenem hydrolysis with metallo-β-lactamase ImiS. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1844-7

  19. Wang Z, Benkovic SJ. Purification, characterization, and kinetic studies of a soluble bacteroides fragilis Metallo-β-lactamase that provides multiple antibiotic resistance. The Journal of Biological Chemistry. 1998;273:22402–8.

    Article  CAS  Google Scholar 

  20. Marthada VK. The enthalpy of solution of SRM 1655 (KCl) in H2O. J Res Nat Bur Stand. 1980;85(6):467–71.

    Article  Google Scholar 

  21. Ditmars DA, Ishihara S, Chang SS. Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K. J Res N at l Bur Stand. 1982;87:159–63.

    Article  CAS  Google Scholar 

  22. Gao SL, Chen SP, Hu RZ, Li HY, Shi QZ. Derivation and application of thermodynamic equations. Chinese Journal of Inorganic Chemistry. 2002;18:362–6.

    CAS  Google Scholar 

  23. Yan XY, Gao HZ, Feng JL, Yang X, Cheng X, Jia C, Yang KW. Wild-type and Co(II) substituted metallo-β-lactamase L1: spectroscopic characterization and kinetic studies of catalyzing antibiotic hydrolysis. Chin J Antibiotic. 2011;36(5):388–93.

    CAS  Google Scholar 

  24. Feng JL, Yang X, Yan XY, Gao HZ, Wu D, Yang KW. Expression, purification of ImiS and kinetic studies on hydrolysis of three types of β-lactam antibiotics catalyzed by ImiS. Chin J Antibiotic. 2011;36(3):197–200.

    CAS  Google Scholar 

  25. Yang Y, Rasmussen BA, Bush K. Biochemical characterization of the metallo-β-Lactamase CcrA from bacteroides fragilis TAL3636. Antimicrob Agents Chemother. 1992;36:1155–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Professor Michael Crowder at Miami University for plasmid pMSZ02 used for expression of CcrA. This study was supported by the National Natural Science Foundation of China (20972127), Doctoral Foundation of China (200806970005), National Science Foundation of Shaanxi Province (2009JM2002) and Key Fund for International Cooperation of Shaanxi Province (2010KW-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Wu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, L., Yang, KW., Liu, CC. et al. Exploring antibiotic resistance based on enzyme hydrolysis by microcalorimetry. J Therm Anal Calorim 111, 1657–1661 (2013). https://doi.org/10.1007/s10973-011-1979-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1979-6

Keywords

Navigation