Skip to main content
Log in

Thermal stability during pyrolysis of sunflower oil produced in the northeast of Brazil

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aims to analyze thermal stability and make a rheological assessment of sunflower oil produced in the Northeast of Brazil, resulting from the pyrolysis process. Oil samples were submitted to thermal degradation and the reaction was evaluated by the thermogravimetric technique, at temperatures between 30 and 900 °C. Apparent activation energy was determined using the model-free kinetics theory. The coaxial cylinder system at operating temperature of 40 °C was used to obtain rheological parameters. Oil was characterized by gas chromatography. The lipid profile of the oil exhibited good quality. The activation energy of the sunflower oil was 201.2 kJ mol−1. Results showed the influence of physical–chemical characteristics of vegetable oil on the thermal decomposition process. Rheological analyses confirmed Newtonian rheological behavior. The high potential of the “Catissol” variety produced in Northeast Brazil as raw material for biofuel production using pyrolysis was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conceição MM, Fernandes VJ, Bezerra MC, Silva MCD, Santos IGM, Silva FC, Souza AG. Dynamic kinetic calculation of castor oil biodiesel. J Therm Anal Calorim. 2007;87(3):865–9.

    Article  Google Scholar 

  2. Freire LMS, Bicudo TC, Rosenhaim R, Sinfrônio FSM, Botelho JR, Carvalho Filho JR, Santos IMG, Fernandes VJ Jr, Antoniosi Filho NR, Souza AG. Thermal investigation of oil and biodiesel from Jatropha curcas L. J Therm Anal Calorim. 2009;96:1029–33.

    Article  CAS  Google Scholar 

  3. Suarez PAZ, Meneghetti SMP, Meneghethi MR, Wolf CR. Transformação de triglicerídeos em combustíveis, materiais poliméricos e insumos químicos: Algumas aplicações da catálise na oleoquímica. Quim Nova. 2007;30(3):667–76.

    Article  CAS  Google Scholar 

  4. Meier D, Faix O. State of the art of applied fast pyrolisis of lignocellulosic materials-a review. Bioresour Technol. 1999;68:71–7.

    Article  CAS  Google Scholar 

  5. Mohan D, Pittman CU, Steele PH, Energ Fuel, 2006; 20:248. doi:10.1021/ef0502397.

  6. Maher KD, Bressler DC. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol. 2007;98:2351–68.

    Article  CAS  Google Scholar 

  7. Embrapa. In: Tecnologias da Produção de Girassol. http://www.cnpso.embrapa.br/producaogirassol. Accessed 13 Jun 2008.

  8. Ministério do Desenvolvimento Agrário. http://www.mda.gov.br/portal/Index/Show/Index/Cod/134/Codinterno/15763. Accessed 13 Dez 2008.

  9. Emater. http://www.rn.gov.br/sistemnoticias/noticias.Asp?idnoticia=13093. Accessed 12 Nov 2008.

  10. Lira MA, Carvalho HWL, Carvalho CGP, Lima JMP. Medeiros AA Avaliação de Cultivares de Girassol no Estado do Rio Grande do Norte. Artigos Científicos: Emparn-Empresa de Pesquisa Agropecuária do RN; 2007.

    Google Scholar 

  11. Rodríguez RP, Sierens R, Verhelst S. Thermal and kinetic evaluation of biodiesel derived from soybean oil and higuereta oil. J Therm Anal Calorim. 2009;96:897–901.

    Article  Google Scholar 

  12. Geißler R, Saraji-Bozorgzard M, Streibel T, Kaisersberger E, Denner T, Zimmermann R. Investigation of different crude oils applying thermal analysis/mass spectrometry with soft photoionisation. J Therm Anal Calorim. 2009;96:813–20.

    Article  Google Scholar 

  13. Arias S, Prieto MM, Ramajo B, Espina A, García JR. Model-free kinetics applied to the vaporization of caprylic acid. J Therm Anal Calorim. 2009;98:457–62.

    Article  CAS  Google Scholar 

  14. Alencar JW, Alves PB, Craveiro AA. Pyrolysis of tropical vegetable oils. J. Agr. Food Chem. 1983;31(6):1268–70.

    Article  CAS  Google Scholar 

  15. Fortes ICP, Baughb PJ. J Brazil Chem Soc. 1999;10:469.

    Article  CAS  Google Scholar 

  16. Lima DG, Soares CD, Ribeiro EB, Carvalho DA, Cardoso ECV, Rassi FC, Mundim KC, Rubim JC, Suarez PAZ. Diesel-like fuel obtained by pyrolysis of vegetable oils. J Anal Appl Pyrol. 2004;71:987–96.

    Article  CAS  Google Scholar 

  17. Santos JCO, Santos IMG, Conceição MM, Porto SL, Trindade MFS, Souza AG, Prasad S, Fernandes VJ Jr, Araújo AS. Thermoanalitical, kinetic and rheological parameters of commercial edible vegetable oils. J Therm Anal Calorim. 2004;75:419–28.

    Article  CAS  Google Scholar 

  18. Garcia CC, Franco PIBM, Zuppa TO, Antoniosi Filho NR, Leles MIG. Thermal stability studies of some cerrado plant oils. J Therm Anal Calorim. 2007;87:645–8.

    Article  CAS  Google Scholar 

  19. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Goryachko V. Potentialities of software for kinetic processing of thermoanalytical data by the isoconversion method. Thermochim Acta. 1992;30:221–30.

    Article  Google Scholar 

  21. Yougun S, Sensoz S, Koçkar OM. Characterization of pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass Bioenerg. 2001;20:141–8.

    Article  Google Scholar 

  22. Gerçel FH. Production and characteriation of pyolisys liquids from sunflower-pressed bagasse. Bioresour Technol. 2002;85:113–7.

    Article  Google Scholar 

  23. Souza MJB, Silva AOS, Aquino JMFB, Fernandes VJ, Araujo AS. Kinetic study of template removal of MCM-41 nanostructured material. J Therm Anal Calorim. 2004;2:693–8.

    Article  Google Scholar 

  24. Santos JCO, Dantas JP, Souza AG, Conceição MM. Kinetic parameters on thermal degradation of edible vegetable oils by thermogravimetric In: Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel, 2, Anais do Congresso,Varginha, 2005,582–586.

  25. Esteves W; Golçalves L; Arellano DB. Compilação da metodologia padrão Alemã para análise de gorduras e outros lipídeos. (Translation of: Deutsche Einheitsmethodem zur Untersuchung von Fetten, Fettprodukten, Tensiden und verwandten Stoffen Abteilung A, B, C, F). Campinas, 1995.

  26. Nip WK. Development and storage stability of drum dried guava and papaya-taro flakes. J Food Sci. 1979;44(1):222–5.

    Article  CAS  Google Scholar 

  27. Carvalho AV, Garcia NHP, Wada JKA. Caracterização físico-química e curvas de solubilidade protéica de sementes, amêndoas fermentadas e torradas de cupuaçu (Theobroma grandiflorum Schum). Br J Food Technol. 2005;8(2):127–34.

    CAS  Google Scholar 

  28. Vyazovkin S, Wright CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  29. AOCS. American Oil Chemists’ Society. Official methods and recommended practices of the American oil chemists’ society (5 edn) Champaign, 2002.

  30. Aguiar RH. Avaliação de Girassol Durante o Armazenamento, para Uso Como Semente ou Extração de Óleo. Dissertação de mestrado em Engenharia Agrícola. Departamento de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas. 2001.

  31. Telles MM, Caracterização dos Grãos, Torta e Óleo de Três Variedades de Girassol (Helianthus Annus L.) e Estabilidade do Óleo Bruto. Dissertação de mestrado em Ciências dos Alimentos. Universidade Federal de Santa Catarina, Florianópolis, 2006.

  32. Bagnis CG. Isolado Protéico de Girassol – Obtenção e Propriedades. Dissertação de mestrado em Tecnologia de Alimentos. Universidade Estadual de Campinas. São Paulo. Campinas. 1984.

  33. Brock J, Nogueira MR, Zakrzevski C, Corazza FC, Corazza ML, Oliveira JV. Determinação experimental da viscosidade e condutividade térmica de óleos vegetais. Ciênc Tecnol Aliment. 2008;28(3):564–70.

    Article  Google Scholar 

  34. Moretto E. Fett R. Tecnologia de Óleos e Gorduras Vegetais. São Paulo: Livraria Varela; 1998.

    Google Scholar 

  35. Mandarino JMG. Características bioquímicas e nutricionais do óleo e do farelo de girassol. EMPRAPA-CNPSo, Documentos n.52, p 25. Londrina, 1992.

  36. Castiglioni VBR, Balla A, Castro C, Silveira JM. Fases de desenvolvimento da planta de girassol. Londrina: EMBRAPA, CNPSo. Documento n.59, 1997.

  37. Pighinelli ALMT. Extração mecânica de óleos de amendoim e de girassol para a produção de biodiesel via catálise básica. Dissertação de mestrado em Engenharia Agrícola. Universidade Estadual de Campinas, Campinas. 2007.

  38. Santos FC, Ferreira JCN. Decomposição catalítica de óleo de soja em presença de diferentes zeólitas. Quim Nova. 1998;21(5):560–3.

    Article  CAS  Google Scholar 

  39. Seye O, Cortez LAB, Gómez EO. Estudo cinético da biomassa a partir de resultados termogravimétricos. In: Encontro de Energia no Meio Rural, 3, Campinas. Anais. São Paulo, 2000.

Download references

Acknowledgements

To the National Council of Scientific and Technological Development (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa M. B. D. Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correia, I.M.S., Souza, M.J.B., de S. Araújo, A. et al. Thermal stability during pyrolysis of sunflower oil produced in the northeast of Brazil. J Therm Anal Calorim 109, 967–974 (2012). https://doi.org/10.1007/s10973-011-1773-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1773-5

Keywords

Navigation