Skip to main content
Log in

Thermal decomposition of the layered double hydroxides of formula Cu6Al2(OH)16CO3 and Zn6Al2(OH)16CO3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Zn-Al hydrotalcites and Cu-Al hydrotalcites were synthesised by coprecipitation method and analysed by X-ray diffraction (XRD) and thermal analysis coupled with mass spectroscopy. These methods provide a measure of the thermal stability of the hydrotalcite. The XRD patterns demonstrate similar patterns to that of the reference patterns but present impurities attributed to Zn(OH)2 and Cu(OH)2. The analysis shows that the d003 peak for the Zn-Al hydrotalcite gives a spacing in the interlayer of 7.59 Å and the estimation of the particle size by using the Debye-Scherrer equation and the width of the d003 peak is 590 Å. In the case of the Cu-Al hydrotalcite, the d003 spacing is 7.57 Å and the size of the diffracting particles was determined to be 225 Å.

The thermal decomposition steps can be broken down into 4 sections for both of these hydrotalcites. The first step decomposition below 100°C is caused by the dehydration of some water absorbed. The second stage shows two major steps attributed to the dehydroxylation of the hydrotalcite. In the next stage, the gas CO2 is liberated over a temperature range of 150°C. The last reactions occur over 400°C and involved CO2 evolution in the decomposition of the compounds produced during the dehydroxylation of the hydrotalcite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Taylor, Clay Miner., 17 (1982) 369.

    Article  CAS  Google Scholar 

  2. H. F. W. Taylor, Miner. Mag. J. Miner. Soc., (1876–1968) 37 (1969) 338–342.

    Article  CAS  Google Scholar 

  3. H. C. B. Hansen and C. B. Koch, Appl. Clay Sci., 10 (1995) 5.

    Article  CAS  Google Scholar 

  4. Y.-H. Lin, M. O. Adebajo, R. L. Frost and J. T. Kloprogge, J. Therm. Anal. Cal., 81 (2005) 83.

    Article  CAS  Google Scholar 

  5. Y.-H. Lin, M. O. Adebajo, J. T. Kloprogge, W. N. Martens and R. L. Frost, Mater. Chem. Phys., 100 (2006) 174.

    Article  CAS  Google Scholar 

  6. R. L. Frost and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 217.

    Article  CAS  Google Scholar 

  7. R. L. Frost and M. L. Weier, Thermochim. Acta, 409 (2004) 79.

    Article  CAS  Google Scholar 

  8. R. L. Frost, M. L. Weier and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 1025.

    Article  CAS  Google Scholar 

  9. R. Allmann and J. D. H. Donnay, Am. Mineral., 54 (1969) 296.

    CAS  Google Scholar 

  10. T. Moroz, L. Razvorotneva, T. Grigorieva, M. Mazurov, D. Arkhipenko and V. Prugov, Appl. Clay Sci., 18 (2001) 29.

    Article  CAS  Google Scholar 

  11. J. T. Kloprogge and R. L. Frost, Appl. Catal., A: General, 184 (1999) 61.

    Article  Google Scholar 

  12. A. Alejandre, F. Medina, X. Rodriguez, P. Salagre, Y. Cesteros and J. E. Sueiras, Appl. Catal., B 30 (2001) 195.

    Article  CAS  Google Scholar 

  13. J. Das and K. Parida, React. Kinet. Catal. Lett., 69 (2000) 223.

    Article  CAS  Google Scholar 

  14. S. H. Patel, M. Xanthos, J. Grenci and P. B. Klepak, J. Vinyl Addit. Technol., 1 (1995) 201.

    Article  CAS  Google Scholar 

  15. V. Rives, F. M. Labajos, R. Trujillano, E. Romeo, C. Royo and A. Monzon, Appl. Clay Sci., 13 (1998) 363.

    Article  CAS  Google Scholar 

  16. F. Rey, V. Fornes and J. M. Rojo, J. Chem. Soc., Faraday Trans., 88 (1992) 2233.

    Article  CAS  Google Scholar 

  17. M. Valcheva-Traykova, N. Davidova and A. Weiss, J. Mater. Sci., 28 (1993) 2157.

    Article  CAS  Google Scholar 

  18. R. L. Frost, J. M. Bouzaid, A. W. Musumeci, J. T. Kloprogge and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 437.

    Article  CAS  Google Scholar 

  19. R. L. Frost and Z. Ding, Thermochim. Acta, 405 (2003) 207.

    Article  CAS  Google Scholar 

  20. R. L. Frost and K. L. Erickson, Thermochim. Acta, 421 (2004) 51.

    Article  CAS  Google Scholar 

  21. R. L. Frost, W. Martens, Z. Ding and J. T. Kloprogge, J. Therm. Anal. Cal., 71 (2003) 429.

    Article  CAS  Google Scholar 

  22. R. L. Frost, A. W. Musumeci, T. Bostrom, M. O. Adebajo, M. L. Weier and W. Martens, Thermochim. Acta, 429 (2005) 179.

    Article  CAS  Google Scholar 

  23. R. L. Frost, A. W. Musumeci, J. T. Kloprogge, M. L. Weier, M. O. Adebajo and W. Martens, J. Therm. Anal. Cal., 86 (2006) 205.

    Article  CAS  Google Scholar 

  24. R. L. Frost, M. L. Weier, M. E. Clissold, P. A. Williams and J. T. Kloprogge, Thermochim. Acta, 407 (2003) 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voyer, N., Soisnard, A., Palmer, S.J. et al. Thermal decomposition of the layered double hydroxides of formula Cu6Al2(OH)16CO3 and Zn6Al2(OH)16CO3 . J Therm Anal Calorim 96, 481–485 (2009). https://doi.org/10.1007/s10973-008-9169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9169-x

Keywords

Navigation