Skip to main content
Log in

Zn+2-doped x-Ti–SiO2 tricomposites for enhancement the photo-catalytic degradation of phenol under UV irradiation

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of zinc-doped titania–silica tricomposites (Zn/xTi–SiO2 ) with different Ti-molar ratios were prepared by sol–gel method. Zn+2 ions of 25 wt% were doped on the photo-catalysts using wet impregnation method. The as-synthesized Zn/xTi–SiO2 nano-catalysts were characterized through N2-adsorption–desorption, X-ray diffraction, transmission electron microscope, fourier transform infrared, dynamic light scatterings, photoluminescence, and diffuse reflectance techniques. Photo-catalytic degradation of phenol (PhOH) under 8-W ultraviolet C irradiation was examined. 96% removal was achieved in 150 min by using Zn/20Ti–SiO2. The kinetic study revealed that photo-degradation of PhOH follows pseudo-first order reaction mechanism, where the rate constant was 77.4 × 10−3 min−1. One-way analysis of variance, as well as Student’t-test at α = 0.05 level (95% confidence interval) was performed to comparing the means of the results obtained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bhatkhande DS, Pangarkar VG, Beenackers AACM (2007) Photocatalytic degradation for environmental applications-a review. J Chem Technol Biotechnol 77(1):102–116

    Article  Google Scholar 

  2. Reddy MP, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite supported Ag–TiO2 as Escherichia coli disinfection photo-catalyst. Water Res 41(2):379–386

    Article  Google Scholar 

  3. Wang XL, Pehkonen SO, Ray AK (2007) Removal of aqueous Cr(VI) by a combination of photo-catalytic reduction and co-precipitation. Indus Eng Chem Res 43(7):1665–1672

    Article  Google Scholar 

  4. Tang JW, Durrant JR, Klug DR (2008) Mechanism of photo-catalytic water splitting in TiO2. Reaction of water with photo holes, importance of charge carrier dynamics, and evidence for four holes chemistry. J Am Chem Soc 130(42):13885–13891

    Article  Google Scholar 

  5. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photo-catalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38(13):3001–3008

    Article  Google Scholar 

  6. Subramanian V, Wolf E, Kamat PV (2001) Semiconductor-metal composite nano-structures. To what extent do metal nanoparticles improve the photo-catalytic activity of TiO2 films. J Phys Chem B 105(46):11439–11446

    Article  Google Scholar 

  7. El-Salamony RA, Mahmoud SA (2017) Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light. Arab J Chem 10:194–205

    Article  Google Scholar 

  8. Zhao JC, Wu TX, Wu KQ, Oikawa K, Hidaka H, Serpone N (1998) Photo-assisted degradation of dye pollutants. 3. Degradation of the cationic dye Rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles. Environ Sci Technol 32(16):2394–2400

    Article  Google Scholar 

  9. De Witte K, Busuioc AM, Meynen V, Mertens M, Bilba N, Van Tendelo G, Cool P, Vansant EF (2008) Influence of the synthesis parameters of TiO2–SBA-15 materials on the adsorption and photodegradation of rhodamine-6G. Microporous Mesoporous Mater 110:100–110

    Article  Google Scholar 

  10. Hu C, Wang Y, Tang H (2001) Influence of adsorption on the photo-degradation of various dyes using surface bond conjugated TiO2/SiO2photocatalyst. Appl Catal B 35:95–105

    Article  Google Scholar 

  11. Pan JH, Zhao XS, Lee WI (2011) Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photo-electrochemical applications. Chem Eng J 170:363–380

    Article  Google Scholar 

  12. Shiraishi Y, Saito N, Hirai T (2005) Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. JACS 127:12820–12822

    Article  Google Scholar 

  13. He C, Tian B, Zhang J (2010) Thermally stable SiO2-doped meso-porous anatase TiO2 with large surface area and excellent photocatalytic activity. J Colloid Interface Sci 344:382–389

    Article  Google Scholar 

  14. Alaoui O, Nguyen Q, Rhlalou T (2009) Preparation and characterization of a new TiO2/SiO2 composite catalyst for photocatalytic degradation of indigo carmin. Environ Chem Lett 7:175–181

    Article  Google Scholar 

  15. Chen YX, Wang K, Lou LP (2004) Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. J Photochem Photobiol A 163:281–287

    Article  Google Scholar 

  16. Guo Y, Yang S, Zhou X, Lin C, Wang Y, Zhang W (2011) Enhanced photocatalytic activity for degradation of methyl orange over silica-titania. J Nano Mater 2011:9. Article ID 296953

    Google Scholar 

  17. Xie C, Xu Z, Yang Q, Li N, Zhao D, Wang D, Du Y (2004) Comparative studies of heterogeneous photocatalytic oxidation of heptane and toluene on pure titania, titania–silica mixed oxides and sulfated titania,. J Mol Catal A Chem 217:193–201

    Article  Google Scholar 

  18. Jung KY, Park SB (2000) Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene. Appl Catal B Environ 25:249–256

    Article  Google Scholar 

  19. Ismail AA, Ibrahim IA, Ahmed MS, Mohamed RM, El-Shall H (2004) Sol–gel synthesis of titania–silica photocatalyst for cyanide photodegradation. J Photochem Photobiol A Chem 163:445–451

    Article  Google Scholar 

  20. Shifu C, Gengyu C (2005) Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2–SiO2/beads by sunlight. Solar Energy 79:1–9

    Article  Google Scholar 

  21. Brigante M, Schulz PC (2011) Adsorption of paraquat on mesoporous silica modified with titania: effects of pH, ionic strength and temperature. J Colloid Interface Sci 363:355–361

    Article  Google Scholar 

  22. Kim YK, Kim EY, Whang CM, Kim YH, Lee WI (2005) Microstructure and photocatalytic property of SiO2–TiO2 under various process condition. J Sol–Gel Sci Technol 33:87–91

    Article  Google Scholar 

  23. Kim E, Whang C, Lee W, Kim Y (2006) Photocatalytic property of SiO2/TiO2 nanoparticles prepared by sol-hydrothermal process. J Electroceramics 17:899–902

    Article  Google Scholar 

  24. Arai Y, Tanaka K, Khlaifat AL (2006) Photocatalysis of SiO2-loaded TiO2. J Mol Catal A Chem 243:85–88

    Article  Google Scholar 

  25. Vilhunen SH, Sillanpaa MET (2009) Ultraviolet light emitting diodes and hydrogenperoxide in the photo-degradation of aqueous phenol. J Hazard Mater 161:1530–1534

    Article  Google Scholar 

  26. Fatimah I (2016) Preparation of TiO2–ZnO and its activity test in sonophotocatalytic degradation of phenol, Novitasari. IOP Conf Ser 107:012003. doi:10.1088/1757-899X/107/1/012003

    Article  Google Scholar 

  27. Keyla M, Fuentes, Betancourt P, Marrero S, García S (2016) Photocatalytic degradation of phenol using doped titania supported on photonic SiO2 spheres, React Kinet Mech Catal doi:10.1007/s11144-016-1097-3

  28. Yang G, Yan Z, Xiao T (2012) Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity. Appl Surf Sci 258:8704–8712

    Article  Google Scholar 

  29. Gobara H, El-Salamony R, Mohamed D, Mishrif M, Moustafa Y, Gendy T (2014) Use of SiO2–TiO2 nano-composite as photo-catalyst for the removal of trichlorophenol: a kinetic study and numerical evaluation. Chem Mater Res 6(6):63–81

    Google Scholar 

  30. Gobara HM, El-Salamony RA, Hassan SA (2016) Sonophotocatalytic degradation of eriochrome black-T dye in water using Ti grafted SBA-15. J Porous Mater 23:1311–1318

    Article  Google Scholar 

  31. Katsunori K, Puyam SS (1999) Titanium-containing porous silica prepared by a modified sol−gel method. J Phys Chem B 103:3563–3569

    Article  Google Scholar 

  32. Viswanath RN, Bose AC, Ramasamy S (2001) Preparations and characterizations of nanostructured TiO2 and TiO2–Si(Ti)O2 composite systems. J Phys Chem Solids 62:1991–1998

    Article  Google Scholar 

  33. Hüsing N, Launay B, Doshi D, Kickelbick G (2002) Meso-structured silica−titania mixed oxide thin films. Chem Mater 14:2429–2432

    Article  Google Scholar 

  34. Srinivasan SS, Wade J, Stefanakos EK, Goswami Y (2016) Synergistic effects of sulfation and co-doping on the visible light photo-catalysis of TiO2. J Alloys Compd 424(1–2):322–326

    Article  Google Scholar 

  35. Bragaru A, Kusko M, Kusko M, Vasile E, Vasile E, Simion M, Danila M, Ignat T, Mihalache I, Pascu R, Craciunoiu F (2013) Analytical characterization of engineered ZnO nanoparticles relevant for hazard assessment. J Nanoparticle Res 15:1352

    Article  Google Scholar 

  36. Lupan O, Chow L, Chai G, Heinrich H (2008) Fabrication and characterization of Zn–ZnO core–shell microspheres from nanorods. Chem Phys Lett 465:249–253

    Article  Google Scholar 

  37. El-Salamony RA, Morsi RE, Alsabagh AM (2015) Preparation, stability and photocatalytic activity of titania nanofluid using gamma irradiated titania nanoparticles by two-step method. J Nanofluids 4:442–448

    Article  Google Scholar 

  38. Abd El-All S, El-Shobaky GA (2009) Structural and electrical properties of γ-irradiated TiO2/Al2O3 composite prepared by sol–gel method. J Alloys Compd 479:91–96

    Article  Google Scholar 

  39. Janjua SI, Hussain M, Ahmad M, Shahzada S, Ali G, Maaz K, Karim S (2015) Enhanced photocatalytic properties of ZnO nanoparticles for the degradation of rhodamine B. Nucleus 5(24):176–179

    Google Scholar 

  40. Kumar H, Rani R (2013) Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. Int Lett Chem Phys Astron 19:26–36

    Article  Google Scholar 

  41. Xiang Q, Yu J, Wong PK (2011) Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J Colloids Interface Sci 357:163–167

    Article  Google Scholar 

  42. El-Salamony RA, Abd El-Hafiza DR (2014) Influence of preparation method on copper loaded titania nanoparticles: textural, structural properties and its photocatalytic activity towards P-Nitrophenol. Chem Mater Res 6:122–134

    Google Scholar 

  43. El-Salamony RA, Amdeha E, Ghoneim SA, Badawy NA, Salem KM, Al-Sabagh (2017) AM Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation, Environ Technol doi:10.1080/21622515.2017.1290148

  44. Stefan O, Pana C, Leostean C, Bele D, Silipas M, Senila, Gautron E (2014) Synthesis and characterization of Fe3O4–TiO2 core–shell nanoparticles. J Appl Phys 116:114312

    Article  Google Scholar 

  45. Rouhi J, Mamat MH, Ooi CHR, Mahmud S, Mahmood MR (2015) High-performance dye-sensitized solar cells based on morphology-controllable synthesis of ZnO–ZnS heterostructur nanocone photoanodes. PLoS One 10(4):e0123433. doi:10.1371/journal.pone.0123433

    Article  Google Scholar 

  46. Tanaka K, Padermpole K, Hisaagam T (2000) Photocatalytic degradation of commercial azo dyes. Water Res 34:327–333

    Article  Google Scholar 

  47. Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46:5453–5471

    Article  Google Scholar 

  48. Hadnadjev-kostic M, Vulic T, Marinkovic-neducin R (2014) Solar light induced rhodamine B degradation assisted by TiO2–Zn–Al LDH based photocatalysts. Adv Powder Technol 25:1624–1633

    Article  Google Scholar 

  49. Zhan J, Zhang H, Zhu G (2014) Magnetic photocatalysts of ceno spheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces. Ceram Int 40:8547–8559

    Article  Google Scholar 

  50. Kumar SG, Rao KSRK (2015) Facile synthesis of core–shell and Janus particles via 2-D dendritic growth of gold. Appl Surf Sci 355:939–958

    Article  Google Scholar 

  51. Rajbongshi BM, Samdarshi SK (2014) Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum. Appl Catal B Environ 144:435–441

    Article  Google Scholar 

  52. El-Salamony RA (2016) Advances in photo-catalytic materials for environmental applications. Res Rev J Mat Sci 4(2):26–50

    Google Scholar 

  53. Jiang T, Xie T, Zhang Y, Chen L, Peng L, Li H, Wang D (2010) Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys Chem Chem Phys 12:15476–15481

    Article  Google Scholar 

  54. Xu W, Zhang H, Yang Z, Zhang J (2008) Numerical investigation on the flow characteristics and permeability of three-dimensional reticulated foam materials. Chem Eng J 140:562–569

    Article  Google Scholar 

  55. Aboul-Gheit AK, El-Desouki DS, El-Salamony RA (2014) Different outlet for preparing nano-TiO2 catalysts for the photodegradation of black B Dye in Water. EJP 23:339–348

    Google Scholar 

  56. Theurich J, Lindner M, Bahnemann DW (1996) Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions:  a kinetic and mechanistic study. Langmuir 12:6368–6376

    Article  Google Scholar 

  57. Zenkevich IG, Kochetova MV, Larionov OG, Revina AA (2005) Retention indices as the best reproducible chromatographic parameters for the characterization of phenolic compounds in reversed-phase high-performance liquid chromatography. J Anal Chem 60:655–667

    Article  Google Scholar 

  58. Devlin HR, Iestyn HJ (1984) Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Ind Eng Chem Fundam 23:387–392

    Article  Google Scholar 

  59. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ (2010) Photocatalytic degradation of 2,4-dichlorophenol in irradiated aqueous ZnO suspension. Int J Chem 2:180–193

    Article  Google Scholar 

  60. Hashimoto S, Miyata T, Washino M, Kawakami W (1979) A liquid chromatographic study on the radiolysis of phenol in aqueous solution. Environ Sci Technol 13:71–75

    Article  Google Scholar 

  61. Paschoalino FCS, Paschoalino MP, Jordãl E, Jardim Wde-F (2012) Evaluation of TiO2, ZnO, CuO and Ga2O3 on the photocatalytic degradation of phenol using an annular-flow photocatalytic reactor. Open J Phys Chem 2:135–140

    Article  Google Scholar 

  62. Huang YH, Huang YJ, Tsai HC, Chen HT (2010) Degradation of phenol using low concentration of feric ions by the photo-fenton process. J Taiwan Inst Chem Eng 41(6):699–704

    Article  Google Scholar 

  63. Subramanian M, Kannan A (2010) Photocatalytic degradation of phenol in a rotating annular reactor. Chem Eng Sci 65(9):2727–2740

    Article  Google Scholar 

  64. Velasco LF, Tsyntsarski B, Petrova B, Budinova T, Petrov N (2010) Carbon foams as catalyst supports for phenol photodegradation. J Hazard Mater 184(1–3):843

    Article  Google Scholar 

  65. Younis SA, Moustafa YM (2016) Synthesis of urea-modified MnFe2O4 for aromatic micro-pollutants adsorption from wastewater: mechanism and modeling. Clean Technol Environ Policy doi:10.1007/s10098-016-1244-6

  66. Younis SA, Abd-Elazizc A, Hashem AI (2016) Utilization of a pyrrole derivative based antimicrobial functionality impregnated onto CaO/g-C3N4 for dyes adsorption. RSC Adv 6:89367–89379

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Egyptian Petroleum Research Institute and Laboratoire de Chimie de Coordination UPR CNRS 8241, composante ENSIACET, Université de Toulouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radwa A. El-Salamony.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Salamony, R.A., Gobara, H.M., Younis, S.A. et al. Zn+2-doped x-Ti–SiO2 tricomposites for enhancement the photo-catalytic degradation of phenol under UV irradiation. J Sol-Gel Sci Technol 83, 422–435 (2017). https://doi.org/10.1007/s10971-017-4427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4427-7

Keywords

Navigation