Skip to main content

Advertisement

Log in

TiO2 hierarchical porous films sensitized by Sb2S3 nanoparticles for enhanced photoelectrochemical properties

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, a novel TiO2 hierarchical porous film sensitized by Sb2S3 nanoparticles was prepared as photoelectrode for photoelectrochemical hydrogen generation. Firstly, TiO2 hierarchical porous film was synthesized by sol–gel technology using polyethylene glycol as template via self-assembly. Subsequently, Sb2S3 nanoparticles were deposited on the TiO2 hierarchical porous film to construct TiO2/Sb2S3 heterojunction by successive ionic layer adsorption and reaction method. This new hierarchical porous composite structure demonstrated a high efficient photoelectrochemical performance with a remarkable photocurrent density of 1.40 mA cm−2 determined at 1.2 V vs. Ag/AgCl. The enhanced performance of TiO2 hierarchical porous film/Sb2S3 nanoparticles composite photoelectrode originated from the enhanced light absorption in visible region and reduced photogenerated charge recombination rate. Furthermore, compared with plain or less pore materials, hierarchical porous materials own the larger extraordinary localized surface to facilitate light harvesting and offer more active sites to deposit Sb2S3 nanoparticles. This work exhibits important significance in constructing photoelectrode for photoelectrochemical hydrogen generation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang Q, Ye Z, Xiao X (2015) Recent progress in photocathodes for hydrogen evolution. J Mater Chem A 3:15824–15837

    Article  Google Scholar 

  2. Hong TT, Liu ZF, Yan WG, Wang B, Zhang XQ, Liu JQ, Wang JK, Han JH (2015) A novel quaternary solid solution photo-absorber material for photoelectrochemical hydrogen generation. Chem Commun 51:13678–13681

    Article  Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  4. In SC, Chen ZB, Arnold JF, Dong RK, Pratap MR, Thomas FJ, Zheng XL (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984

    Article  Google Scholar 

  5. Yatom N, Neufeld O, Caspary Toroker M (2015) Toward settling the debate on the role of Fe2O3 surface states for water splitting. J Phys Chem C 119:24789–24795

    Article  Google Scholar 

  6. Lee C, Aikens CM (2015) Water splitting processes on Mn4O4 and CaMn3O4 model cubane systems. J Phys Chem A 119:9325–9337

    Article  Google Scholar 

  7. Vuong NM, Reynolds JL, Conte E, Lee YH (2015) ZnO nanorod-based photoanode sensitized by CdS and carbon quantum dots for photoelectrochemical water splitting. J Phys Chem C 119:24323–24331

    Article  Google Scholar 

  8. Hong TT, Liu ZF, Liu H, Liu JQ, Zhang XQ, Han JH, Guo KY, Wang B (2015) Preparation and enhanced photoelectrochemical performance of selenite sensitized zinc oxide core/shell composite structure. J Mater Chem A 3:4239–4247

    Article  Google Scholar 

  9. Zou XX, Li GD, Wang YN, Zhao J, Yan C, Guo MY, Li L, Chen JS (2011) Direct conversion of urea into graphitic carbon nitride over mesoporous TiO2 spheres under mild condition. Chem Commun 47:1066–1068

    Article  Google Scholar 

  10. Li Z, Kong C, Lu G (2015) Visible photocatalytic water splitting and photocatalytic two-electron oxygen formation over Cu and Fe doped C3N4. J Phys Chem C 120:56–63

    Article  Google Scholar 

  11. Liu ZF, Guo KY, Han JH, Li YJ, Cui T, Wang B, Ya J, Zhou CL (2014) Dendritic TiO2/ln2S3/AgInS2 trilaminar core/shell branched nanoarrays and the enhanced activity for photoelectrochemical water splitting. Small 10:3153–3161

    Article  Google Scholar 

  12. Ubale AU (2010) Effect of complexing agent on growth process and properties of nanostructured Bi2S3 thin films deposited by chemical bath deposition method. Mater Chem Phys 121:555–560

    Article  Google Scholar 

  13. Han JH, Liu ZF, Guo KY, Zhang XQ, Hong TT, Wang B (2015) AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting. Appl Catal B: Environ 179:61–68

    Article  Google Scholar 

  14. Jiang ZJ, Tang YT, Tay QL, Zhang YY, Oleksandr IM, Wang DP, Deng JY, Lai YK, Zhou HF, Chen XD, Dong ZL, Chen Z (2013) Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv Energy Mater 3:1368–1380

    Article  Google Scholar 

  15. Mahajan VK, Mohapatra SK, Misra M (2008) Stability of TiO2 nanotube arrays in photoelectrochemical studies. Int J Hydrogen Energy 33:5369–5374

    Article  Google Scholar 

  16. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  Google Scholar 

  17. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134:3659–3662

    Article  Google Scholar 

  18. Zhang ZH, Zhang LB, Hedhili MN, Zhang HN, Wang P (2012) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20

    Article  Google Scholar 

  19. Han JH, Liu ZF, Yadian B, Huang YZ, Guo KY, Liu ZC, Li YJ, Wang B, Cui T (2014) Synthesis of metal sulfide sensitized zinc oxide-based core/shell/shell nanorods and their photoelectrochemical properties. J Power Sources 268:388–396

    Article  Google Scholar 

  20. Yu ZM, Meng JL, Xiao JG, Li Y, Li YD (2014) Cobalt sulfide quantum dots modified TiO2 nanoparticles for efficient photocatalytic hydrogen evolution. Int J Hydrogen Energy 39:15387–15393

    Article  Google Scholar 

  21. Hensel J, Wang GM, Li Y, Zhang JZ (2010) Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett 10:478–483

    Article  Google Scholar 

  22. Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2007) Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal Today 120:133–138

    Article  Google Scholar 

  23. Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MR (2004) Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J Phys Chem B 108:17269–17273

    Article  Google Scholar 

  24. Li CK, Liou SYH, Dong CL, Yeh PH, Chen CL (2015) Tandem structure of QD cosensitized TiO2 nanorod arrays for solar light driven hydrogen generation. ACS Sustainable Chem Eng 4:210–218

    Google Scholar 

  25. Cardoso JC, Grimes CA, Feng X, Zhang XY, Komarneni S, Zanoni MVBZ (2012) Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic–inorganic thin film photovoltaics. Chem Commun 48:2818–2820

    Article  Google Scholar 

  26. Chang JA, Rhee JH, Im SH, Lee YH, Kim H, Seok S, Nazeeruddin MK, Gratzel M (2010) High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett 10:2609–2612

    Article  Google Scholar 

  27. Liu JW, Li J, Sedhain A, Lin JY, Jiang HX (2008) Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. J Phys Chem C 112:17127–17132

    Article  Google Scholar 

  28. Zhang MY, Shao CL, Guo ZC, Zhang ZY, Mu JB, Cao TP, Liu YC (2011) Hierarchical nanostructures of copper (II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl Mater Interfaces 3:369–377

    Article  Google Scholar 

  29. Feng XJ, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA (2008) Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett 8:3781–3786

    Article  Google Scholar 

  30. Wang GM, Wang HY, Ling YC, Tang YC, Yang XY, Robert C, Fitzmorris, Wang CC, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

  31. Wang CH, Shao CL, Liu YC, Li XH (2009) Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. Inorg Chem 48:1105–1113

    Article  Google Scholar 

  32. Jiang J, Gu F, Shao W, Li CZ (2012) Fabrication of spherical multi-hollow TiO2 nanostructures for photoanode film with enhanced light-scattering performance. Ind Eng Chem Res 51:2838–2845

    Article  Google Scholar 

  33. Guo KY, Liu ZF, Zhou CL, Han JH, Zhao YF, Liu ZC, Li YJ, Cui T, Wang B, Zhang J (2014) Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance. Appl Catal B: Environ 154:27–35

    Article  Google Scholar 

  34. Liu ZF, Ya J, E L, Xin Y, Zhao W (2010) Effect of V doping on the band gap reduction of porous TiO2 films prepared by sol-gel route. Mater Chem Phys 120:277–281

    Article  Google Scholar 

  35. Liu ZF, Jin ZG, Li W, Qiu JJ (2005) Preparation of ZnO porous thin films by sol-gel using PEG template. Mater Lett 59:3620–3625

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from National Nature Science Foundation of China (No. 51102174), State Key Laboratory of Heavy Oil Processing (No. SKLHOP201505), Natural Science Foundation of Tianjin (16JCYBJC17900) and Scientific & Technological Innovation Project of Xinxiang University (No. 15ZA05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Liu, Z. & Zhao, L. TiO2 hierarchical porous films sensitized by Sb2S3 nanoparticles for enhanced photoelectrochemical properties. J Sol-Gel Sci Technol 82, 157–166 (2017). https://doi.org/10.1007/s10971-016-4298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4298-3

Keywords

Navigation