Skip to main content
Log in

Photochemical solution deposition of β-Bi2O3 thin films

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The non-equilibrium β-Bi2O3 polymorph is stabilized in thin films by a photochemical synthesis method. A strong ultraviolet-absorbing bismuth(III)-N-methyldiethanolamine complex is synthesized in solution as an ideal precursor for the β-Bi2O3 phase. Ultraviolet-light induces the formation of an amorphous —Bi—O—Bi— continuous network in the films deposited from the former solution that easily converts into the β-Bi2O3 polymorph at a temperature as low as 250 °C. The room temperature stabilization of the β-Bi2O3 phase is confirmed by their structural characterization using four-circle X-ray diffractometry. This study unequivocally identified the tetragonal crystal structure of the β-Bi2O3 polymorph in the films. The high phase purity of these β-Bi2O3 films is responsible for their exceptional visible-light photocatalytic activity, thus enabling the applications of the films of this metastable phase at room-temperature conditions.

Graphical Abstract

Photosensitive precursor solutions containing a photosensitive Bi(III)-N-methyldiethanolamine complex lead to the stabilization of the high-temperature β-Bi2O3polymorph in films on Pt-coated silicon substrates prepared at a low temperature of 250 °C using UV-irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mehring M (2007) From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coord Chem Rev 251(7–8):974

    Article  Google Scholar 

  2. Kharton VV, Naumovich EN, Yaremchenko AA, Marques MB (2001) Research on the electrochemistry of oxygen ion conductors in the former Soviet Union - IV. Bismuth oxide-based ceramics. J Solid State Electrochem 5:160

    Article  Google Scholar 

  3. Sanna S, Esposito V, Andreasen JW, Hjelm J, Zhang W, Kasama T, Simosen SB, Christensen M, Linderoth S, Pryds N (2015) Enhancement of the chemical stability in confined delta-Bi2O3. Nat Mater 14:500

    Article  Google Scholar 

  4. Switzer JA, Shumsky MG, Bohnnan EW (1999) Electrodeposited ceramic single crystals. Science 284:293

    Article  Google Scholar 

  5. Lunca Popa P, Sonderby S, Kerdsongpanya S, Lu J, Bonanos N, Eklund P (2013) Highly oriented delta-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering. J Appl Phys 113:046101

    Article  Google Scholar 

  6. Kim MG, Kanatzidis MG, Facchetti A, Marks TJ (2011) Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater 10:382

    Article  Google Scholar 

  7. Bretos I, Jiménez R, Wu A, Kingon A, Vilarinho PM, Calzada ML (2014) Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv Mater 26:1405

    Article  Google Scholar 

  8. Peng F, Ni Y, Zhou Q, Kou J, Lu C, Xu Z (2016) Fabrication of a flexible graphene-TiO2/PDMS photocatalytic film by combining air atmospheric pressure glow discharge treatment. Chem Eng Process 101:8

    Article  Google Scholar 

  9. Kim YH, Heo JS, Kim TH, Park S, Yoon MH, Kim J, Oh MS, Yi GR, Noh YY, Park SK (2012) Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489:128

    Article  Google Scholar 

  10. Bretos I, Jiménez R, Pérez-Mezcua D, Salazar N, Ricote J, Calzada ML (2015) Low-temperature liquid precursors of crystalline metal oxides assisted by eterogeneous photocatalysis. Adv Mater 27:2608

    Article  Google Scholar 

  11. Martín-Arbella N, Bretos I, Jiménez R, Calzada ML, Sirera R (2011) Metal complexes with N-methyldiethanolamine as new photosensitive precursors for the low-temperature preparation of ferroelectric thin films. J Mater Chem 21:9051

    Article  Google Scholar 

  12. Imai I (2004) Ultraviolet (UV) irradiation. In: Kozuka H, Sakka S (eds) Handbook of sol-gel science and technology: processing, characterization and applications, Vol. I – sol-gel processing, Kluwer Academic Publishers, New York, NY, p 639

    Google Scholar 

  13. Le Bris J, Hubert-Pfalzagraf LG, Daniele S, Vaissermann J (2007) Cost efficient synthesis of bismuth aminoalkoxides from bismuth oxide: Molecular structure of [Bi-2(mdea)(2)(mdeaH)(2)](mdeaH(2))(2). Inorg Chem Commun 10:80

    Article  Google Scholar 

  14. Perez-Mezcua D, Sirera R, Jimenez R, Bretos I, De Dobbelaere C, Hardy A, Van Bael MK, Calzada ML (2014) A UV-absorber bismuth(III)-N-methyldiethanolamine complex as a low-temperature precursor for bismuth-based oxide thin films. J Mater Chem C 2:8750

    Article  Google Scholar 

  15. Lu Y, Zhao Y, Zhao J, Song Y, Huang Z, Gao F, Li N, Li Y (2015) Induced aqueous synthesis of Metastable beta-Bi2O3 microcrystals for visible-light photocatalyst study. Cryst Growth Des 15:1081

    Google Scholar 

  16. Schlesinger M, Weber M, Schulze S, Hietschold M, Mehring M (2013) Metastable beta-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. Chemistry Open 2:146

    Google Scholar 

  17. Nathan A, Ahnood AA, Cole MT, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, García-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Chu D, Flewitt AJ, Amaratunga GAJ, Milne WI (2012) Flexible electronics: The next ubiquitous platform. Proceedings of the IEEE 100:1486

    Article  Google Scholar 

  18. Calzada ML (2015) Electroceramic thin films. In: Levy D, Zayat M (eds) The sol-gel handbook, Vol. 2 synthesis, characterization and applications. Wiley-VCH, Germany, p 841

    Google Scholar 

  19. Alguero M, Calzada ML, Quintana C, Pardo L (1999) Ferroelectricity of lanthanum-modified lead titanate thin films obtained by a diol-based sol-gel method. Appl Phys A 68(5):583

    Article  Google Scholar 

  20. Lutterotti L. Materials Analysis Using Diffraction. http://www.ing.unitn.it/~maud/

  21. Calzada ML, Gonzalez A, Poyato R, Pardo L (2003) Photo-sensitive sol-gel solutions for the low-temperature UV-assisted processing of PbTiO3 based ferroelectric thin films. J Mater Chem 13:1451

    Article  Google Scholar 

  22. Calzada ML, Bretos I, Jimenez R, Guillon H, Pardo L (2004) Low-temperature processing of ferroelectric thin films compatible with silicon integrated circuit technology. Adv Mater 16(18):1620

    Article  Google Scholar 

  23. Bretos I, Jimenez R, Rodriguez-Castellon E, Garcia-Lopez J, Calzada ML (2008) Heterostructure and compositional depth profile of low-temperature processed lead titanate-based ferroelectric thin films prepared by photochemical solution deposition. Chem Mater 20(4):1443

    Article  Google Scholar 

  24. Chateigner D (ed): (2010) Combined analysis: structure-texture-microstructure-phase-stresses-reflectivity analysis by x-ray and neutron scattering, Wiley-ISTE, p 496

  25. Grazulis S, Chateigner D, Downs RT, Yokochi AFT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database - an open-access collection of crystal structures. J Appl Cryst 42(4):726

    Article  Google Scholar 

  26. Pérez-Mezcua D (2016) Láminas delgadas de (Bi0.5Na0.5)1-xBaxTiO3 en torno a la frontera de fase morfotrópica preparadas por métodos de depósito químico y fotoquímico de disoluciones. PhD Thesis, University of Navarra (Spain)

  27. Pérez-Mezcua D, Bretos I, Jiménez R, Jiménez-Rioboó R, Ricote J, Gonçalves da Silva C, Chateigner D, Fuentes-Cobas L, Sirera R and Calzada ML (2016) Scientific Reports 6:39561.

  28. Harwig HA (1978) Structure of bismuthsesquioxide - Lpha, Beta,Gamma and Delta-Phase. Z anorg allg Chem 444:151

    Article  Google Scholar 

  29. Harwig HA, Weenk JW (1978) Phase relations in bismuthsesquioxide. Z anorg allg Chem 444:167

    Article  Google Scholar 

  30. Blower SK, Greaves C (1988) The structure of beta-Bi2O3 from powder neutron diffraction data. Acta Cryst C44:587

    Google Scholar 

  31. Hull S, Norberg ST, Tucker MG, Eriksson SG, Mohn CE and Stolen S (2009) Dalton Trans 40:8737

  32. Locherer T, Dasari L, Prasad VK, Dinnebier R, Wedig U, Jansen M (2011) High-pressure structural evolution of HP-Bi2O3. Phys Rev B 83:214102

    Article  Google Scholar 

  33. Schlesinger M, Schulze S, Hietschold M, Mehring M (2013) Metastable beta-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters. Dalton Trans 42:1047

    Article  Google Scholar 

  34. Barrera-Mota K, Bizarro M, Castellino M, Tagliaferro A, Hernández A, Rodil SE (2015) Spray deposited beta-Bi2O3 nanostructured films with visible photocatalytic activity for solar water treatment. Photochem Photobiol Sci 14:1110

    Article  Google Scholar 

  35. Wang J, Yang X, Zhao K, Xu P, Zong L, Yu R, Wang D, Deng J, Chen J, Xing X (2013) Precursor-induced fabrication of beta-Bi2O3 microspheres and their performance as visible-light-driven photocatalysts. J Mater Chem A 1:9069

    Article  Google Scholar 

  36. Brezesinski K, Ostermann R, Hartmann P, Perlich J, Brezesinski T (2010) Exceptional photocatalytic activity of ordered mesoporous beta-Bi2O3 thin films and lectrospun nanofiber mats. Chem Mater 22:3079

    Article  Google Scholar 

  37. Xiao X, Hu R, Liu C, Xing C, Qian C, Zuo X, Nan J, Wang L (2013) Facile large-scale synthesis of beta-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Appl Catal B: Environmental 140:433

    Article  Google Scholar 

  38. Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H, Ye J (2015) An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv Sci 2:1300006

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financed by the Spanish Project MAT2013-40489-P and MAT2016-76851-R. I.B. acknowledges the financial support by Fundación General CSIC (Spanish ComFuturoProgramme)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lourdes Calzada.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Mezcua, D., Bretos, I., Jiménez, R. et al. Photochemical solution deposition of β-Bi2O3 thin films. J Sol-Gel Sci Technol 81, 355–361 (2017). https://doi.org/10.1007/s10971-016-4295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4295-6

Keywords

Navigation