Skip to main content
Log in

A kinetic modeling for the ultrasound-assisted and oxalic acid-catalyzed hydrolysis of 3-glycidoxypropyltrimethoxysilane

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Instantaneous hydrolysis rates of the ultrasound-assisted and oxalic acid-catalyzed hydrolysis of 3-glycidoxypropyltrimethoxysilane (GPTMS) have been obtained at several temperatures by using a dynamic ultrasound-adapted calorimetric method. Hydrolysis starts by ultrasound action because of the initial immiscibility gap between GPTMS and water. The hydrolysis process is a complex result of dissolution between GPTMS and H2O, which increases the hydrolysis rate, and reaction within the phases, which diminishes the hydrolysis rate as the reactants are consumed. The experimental hydrolysis rates were very well fitted by a modified version of an earlier kinetic model based on a dissolution and reaction mechanism. The rate constants for the ultrasound and methanol producing dissolution and the rate constants for the GPTMS hydrolysis were obtained by fitting the modeling to the overall heterogeneous/homogeneous hydrolysis pathway at each temperature studied. The hydrolysis rate constants were found in good agreement with those obtained previously on basis of a non-modeling method applied exclusively to the final homogeneous step of the reaction. Ultrasound producing mixture was found much more effective than methanol producing dissolution during the heterogeneous step of the GPTMS hydrolysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Innocenzi P, Figus C, Kidchob T, Valentine M, Alonso B, Takahashi M (2009) Dalton Trans 2009:9146–9152

    Article  Google Scholar 

  2. Robertson MA, Rudkin RA, Parsonage D, Atkunson A (2003) J Sol-Gel Sci Technol 26:291–295

    Article  Google Scholar 

  3. Liu YL, Su YH, Lai JY (2004) Polymer 45:6831–6837

    Article  Google Scholar 

  4. Peng F, Liu L, Sun H, Wang Y, Liu J, Jiang Z (2005) Chem Mater 17:6790–6796

    Article  Google Scholar 

  5. Deng TS, Zhang QF, Zhang JY, Shen X, Zhu KT, Wu JL (2009) J Colloid Interface Sci 329:292–299

    Article  Google Scholar 

  6. Kang KS, Kim JH (2008) J Phys Chem C 112:618–620

    Article  Google Scholar 

  7. Maly M, Posocco P, Fermeglia M, Pricl S (2008) Mol Simul 34:10–15

    Article  Google Scholar 

  8. Boury B, Corriu R (2003) Chem Rec 3:120–132

    Article  Google Scholar 

  9. Matějka L, Dukh O, Hlavatá D, Meissner B, Brus J (2001) Macromolecules 34:6904–6914

    Article  Google Scholar 

  10. Menaa B, Takahashi M, Innocenzi P, Yoko T (2007) Chem Mater 19:1946–1953

    Article  Google Scholar 

  11. Carboni D, Pinna A, Amenitsch H, Casula MF, Loche D, Malfattia L, Innocenzi P (2015) Phys Chem Chem Phys 17:10679–10686

    Article  Google Scholar 

  12. de la Rosa-Fox N, Esquivias L, Craievich AF, Zarzycki J (1990) J Non-Cryst Solids 121:211–215

    Article  Google Scholar 

  13. Ramirez-Del-Solar M, de la Rosa-Fox N, Esquivias L, Zarzycki J (1990) J Non-Cryst Solids 121:40–44

    Article  Google Scholar 

  14. Paccola CET, Awano CM, de Vicente FS, Donatti DA, Yoshida M, Vollet DR (2015) J Phys Chem C 119:19162–19170

    Article  Google Scholar 

  15. Bashta B, Astakhova O, Shyshchak O, Bratychak M (2014) Chem Chem Technol 8:309–316

    Google Scholar 

  16. Blank WJ, He ZA, Picci M (2002) J Coat Technol 74:33–41

    Article  Google Scholar 

  17. Donatti DA, Ibañez-Ruiz A, Vollet DR (2002) Ultrason Sonochem 9:133–138

    Article  Google Scholar 

  18. Donatti DA, Vollet DR, Ruiz AI (2000) J Sol-Gel Sci Technol 18:5–9

    Article  Google Scholar 

  19. Goldberg RN, Kishore N, Lennen RM (2002) J Phys Chem Ref Data 31:231–370

    Article  Google Scholar 

  20. Assink RA, Kay BD (1988) J Non-Cryst Solids 99:359–370

    Article  Google Scholar 

  21. Pouxviel JC, Boilet JP, Beloeil JC, Lallemand JY (1987) J Non-Cryst Solids 89:345–360

    Article  Google Scholar 

  22. Vollet DR, Donatti DA, Campanha JR (1996) J Sol-Gel Sci Technol 6:57–63

    Article  Google Scholar 

  23. Artaki I, Sinha S, Irwin AD, Jonas J (1985) J Non-Cryst Solids 72:391–402

    Article  Google Scholar 

  24. Yamane M, Inoue S, Yasumori A (1984) J Non-Cryst Solids 63:13–21

    Article  Google Scholar 

  25. Davis SR, Brough AR, Atkinson A (2003) J Non-Cryst Solids 315:197–205

    Article  Google Scholar 

  26. Innocenzi P, Brusatin G, Guglielmi M, Bertani R (1999) Chem Mater 11:1672–1679

    Article  Google Scholar 

  27. Kamal A, Adil SF, Arifuddin MA (2005) Ultrason Sonochem 12:429–431

    Article  Google Scholar 

  28. Memarian HR, Saffar-Teluri A (2007) Beilstein J Org Chem 3:2. doi:10.1186/1860-5397-3-2

    Article  Google Scholar 

  29. Gizdavic-Nikolaidis MR, Edmonds NR, Bolt CJ, Easteal AJ (2008) Curr Appl Phys 8:300–303

    Article  Google Scholar 

  30. Jeyakumar K, Chand DK (2008) Synthesis 5:807–819

    Google Scholar 

Download references

Acknowledgments

Research partially supported by FAPESP and CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimas R. Vollet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vollet, D.R., Barreiro, L.A., Paccola, C.E.T. et al. A kinetic modeling for the ultrasound-assisted and oxalic acid-catalyzed hydrolysis of 3-glycidoxypropyltrimethoxysilane. J Sol-Gel Sci Technol 80, 873–880 (2016). https://doi.org/10.1007/s10971-016-4157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4157-2

Keywords

Navigation