Skip to main content
Log in

Immobilisation of organophosphate hydrolase on mesoporous and Stöber particles

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hexahistidine-tagged organophosphate hydrolase (His6-OPH), an organophosphate degrading enzyme, immobilised by physical adsorption and covalent binding methods on mesoporous silica (MPS) particles, was examined as a biocatalyst for organophosphate hydrolysis within an aqueous medium and for providing an efficient tool in the detection/detoxification of paraoxon. His6-OPH was immobilised on mesoporous silica particles of different pore size distributions (10–40 and 6 nm) and sizes (5 μm and 500 nm), through covalent attachment and physical adsorption. The biocatalysts showed good activities and enhanced stabilities with respect to the free enzymes, depending on the material and used immobilisation technique.

Graphical Abstract

Biomaterial based on hexahistidine-tagged organophosphorus hydrolase (His6-OPH) was developed by enzyme immobilisation into/onto two types of silica particles with different porosity. While adsorbed enzymes showed higher activities, covalent attached enzymes showed minimal or no losses in activity as well as reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wei Y, Xu J, Feng Q, Dong H, Lin M (2000) Matt Letters 40:6

    Article  Google Scholar 

  2. Bickerstaff GF (1997) Immobilization of enzymes and cells. Humana Press, Totova

    Google Scholar 

  3. Geimer P (1992) Immobilized Biosystems in Enzyme Engineering. Ellis Horwood, West Sussex

    Google Scholar 

  4. Taylor R (1991) Protein Immobilization: Fundamentals and Applications. Mmarcel Dekker, New York

    Google Scholar 

  5. Sheldon RA (2007) Adv Synth Catal 349:1289

    Article  Google Scholar 

  6. Wang Y, Hsieh (2008) J Membr Sci 309:71

    Article  Google Scholar 

  7. Krajewska B (2004) Enzyme Microb Technol 35:126

    Article  Google Scholar 

  8. Cao L (2005) Carrier-bound immobilized enzymes: principles, applications and design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  9. Ma J, Zhang L, Liang Z, Zhang Y (2007) J Sep Sci 30:3050

    Article  Google Scholar 

  10. Johnson P, Whately TL (1971) J Colloid Interface Sci 37:557

    Article  Google Scholar 

  11. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605

    Article  Google Scholar 

  12. Reetz MT, Zonta A, Simpelkamp J (1995) Angew Chem Int Ed 34:301

    Article  Google Scholar 

  13. Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013

    Article  Google Scholar 

  14. Eggers DK, Valentine JS (2001) Protein Sci 10:250

    Article  Google Scholar 

  15. Hanefeld U, Gardossi L, Magner E (2009) Chem Soc Rev 38:453

    Article  Google Scholar 

  16. Hudson S, Cooney J, Magner E (2008) Angew Chem Int Ed 47:8582

    Article  Google Scholar 

  17. Lei CH, Shin Y, Magnuson JK, Fryxell G, Lasure LL, Elliott DC, Liu J, Ackerman EJ (2006) Nanotechnology 17:5531

    Article  Google Scholar 

  18. Deere J, Magner E, Wall JG, Hodnett BK (2002) J Phys Chem B 106:7340

    Article  Google Scholar 

  19. Liu J, Shin Y, Nie ZM, Chang JH, Wang LQ, Fryxell GE, Samuels WD, Exarhos GJ (2000) J Phys ChemA 104:8328

    Article  Google Scholar 

  20. Efremenko EN, Sergeeva VS (2001) Rus Chem Bull (Int Ed) 50:1826

    Article  Google Scholar 

  21. Votchitseva YA, Efremenko EN, Aliev TK, Volfomeyev SD (2006) Biochemistry 71:167

    Google Scholar 

  22. Sirotkina M, Lyagin I, Efremenko E (2012) Int Biodeterior Biodegrad 68:18

    Article  Google Scholar 

  23. Lyagin IV, Efremenko EN, Kabanov AV (2014) Moscow Univ Chem Bull 69:125

    Article  Google Scholar 

  24. Frančič N, Bellino MG, Soler-Illia GJAA, Lobnik A (2014) Analyst 139:3127

    Article  Google Scholar 

  25. Frančič N, Lyagun I, Efremenko EN, Lobnik A (2015) J Sol-Gel Sci Technol 74:387

    Article  Google Scholar 

  26. Lee CH, Lang J, Yen CW, Shih PC, Lin TS, Mou CY (2005) J Phys Chem B 109:12277

    Article  Google Scholar 

  27. Wang Y, Caruso F (2005) Chem Mater 17:953

    Article  Google Scholar 

  28. Hartmann M (2005) Chem Mater 17:4577

    Article  Google Scholar 

  29. Yiu HHP, Wright PA (2005) J Mater Chem 15:3690

    Article  Google Scholar 

  30. LeJeune KE, Russell AJ (1996) Biotechnol Bioeng 51:450

    Article  Google Scholar 

  31. Caldwell SR, Raushel FM (1991) Appl Biochem Biotechnol 31:59

    Article  Google Scholar 

  32. Havens PL, Rase HF (1993) Ind Eng Chem Res 32:2254–2258

    Article  Google Scholar 

  33. LeJeune KE, Mesiano AJ, Bower SB, Grimsley JK, Wild JR, Russell AJ (1997) Biotechnol Bioeng 54:105

    Article  Google Scholar 

  34. LeJeune KE, Swers JS, Hetro AD, Donahey GP, Russell AJ (1999) Biotechnol Bioeng 64:250

    Article  Google Scholar 

  35. Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J, Ramanculov E, Simonian A (2010) Colloids Surf B 77:69

    Article  Google Scholar 

  36. Dennis PB, Walker AY, Dickerson MB, Kaplan DL, Naik RR (2012) Biomacromolecules 13:2037

    Article  Google Scholar 

  37. Dosoretz C, Armon R, Starosvetzky J, Rothschild N (1996) J Sol-Gel Sci Technol 7:7

    Article  Google Scholar 

  38. Gill I, Ballesteros AJ (1998) Am Chem Soc 120:8587

    Article  Google Scholar 

  39. Singh AK, Flounders AW, Volponi JV, Ashley CS, Wally K, Schoeniger JS (1999) Biosens Bioelectron 14:703

    Article  Google Scholar 

  40. Flounders AW, Sigh AK, Volponi JV, Carincher SC, Wally K, Simonian AS, Wild JR (1999) Schoeniger JS 14:715

    Google Scholar 

  41. Frančič N, Bellinio M, Soler-Illia GAJJ, Lobnik A (2011) Analyst 139:3127

    Google Scholar 

  42. Gill I, Ballesteros A (2000) Biotechnol Bioeng 70:400

    Article  Google Scholar 

  43. Frenkel-Mullerad H, Avnir D (2005) J Am Chem Soc 127:8077

    Article  Google Scholar 

  44. Frančič N, Košak A, Lyagin I, Efremenko EN, Lobnik A (2011) Anal Bioanal Chem 401:2631

    Article  Google Scholar 

  45. Blin JL et al (2005) Chem Mater 17:1479

    Article  Google Scholar 

  46. Fadnavis NW et al (2003) Biotechnol Prog 19:346

    Article  Google Scholar 

  47. Pierre A (2004) Biocat Biotrans 22:145

    Article  Google Scholar 

  48. Lei C, Shin Y, Ackerman EJ (2002) J Am Chem Soc 124:11242

    Article  Google Scholar 

  49. Lei C, Valenta MM, Saripalli KP, Ackerman EJ (2007) J Environ Qual 36:233

    Article  Google Scholar 

  50. Chen B, Lei C, Shin Y, Liu J (2009) Biochem Biophys Res Commun 390:1177

    Article  Google Scholar 

  51. Efremenko E, Votchitseva Y, Plieva F, Galaev I, Mattiasson B (2006) Appl Microbiol Biotechnol 70:558

    Article  Google Scholar 

  52. Schulz-Ekloff G, Rathouský J, Zukal A (1999) Int J Inorg Mater 1:97

    Article  Google Scholar 

  53. Bradford MM (1976) Anal Biochem 72:248

    Article  Google Scholar 

  54. Cornish-Bowden A (2012) Fundamentals of Enzyme Kinetics, 4th edn. Wiley-Blackwell, Weinheim

    Google Scholar 

  55. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  Google Scholar 

  56. Machado RSA, da Fonseca MG, Arakaki LNH, Espinola JGP, Oliveira SF (2004) Talanta 63:317

    Article  Google Scholar 

  57. Blitz IP, Blitz JP, Gunko VM, Sheeran DJ (2007) Colloids Surf Physicochem Eng Aspects 307:83

    Article  Google Scholar 

  58. Manu V, Mody HM, Bajaj HC, Jasra RV (2009) Ind Eng Chem Res 48:8954

    Article  Google Scholar 

  59. Sakka S (2005) Handbook of sol-gel science and technology, Processing, characterization and applications; Volume II: Characterization of sol-gel materials and products, Kluwer Academic Publisher, p65–89

  60. Chong ASM, Zhao XS (2003) J Phys Chem B 107:12650

    Article  Google Scholar 

  61. White LD, Tripp CP (2000) J Colloid Interface Sci 232:400

    Article  Google Scholar 

  62. Jarzębski AB, Szymańska K, Bryjak J, Mrowiec-Białoń J (2007) Catal Today 124:2

    Article  Google Scholar 

  63. Zhang X, Zhang F, Chan KY (2004) Scr Mater 51:343

    Article  Google Scholar 

  64. Yoshitake H, Yokoi T, Tatsumi T (2002) Chem Mater 14:4610

    Google Scholar 

  65. Barth A, Zscherp C (2002) Q Rev Biophys 35:639

    Article  Google Scholar 

  66. Barth A (2007) Biochim Biophys Acta-bioenergetisc 1767:1073

    Article  Google Scholar 

  67. Van de Weert M, Haris PI, Hennink WE (2005) Anal Biochem 297:160

    Article  Google Scholar 

  68. Deere J, Serantoni M, Edler KJ, Hodnett BK, Wall JG, Magner E (2004) Langmuir 20:532

    Article  Google Scholar 

  69. Essa H, Magner E, Cooney J, Hodnett BK (2007) J Mol Catal B Enzym 49:61

    Article  Google Scholar 

  70. Goradia D, Cooney J, Hodnett BK, Magner E (2005) J Mol Catal B Enzym 32:231

    Article  Google Scholar 

  71. Yiu HHP, Wright PA, Botting NP (2001) Microporous Mesoporous Mater 44–45:763

    Article  Google Scholar 

  72. Yiu HHP, Wright PA, Botting NP (2001) J Mol Catal B: Enzymol 15:81

    Article  Google Scholar 

  73. Gerhartz W (1990) General production methods, In Enzymes in industry: Production and applications. Wiley, New York, p 67

    Google Scholar 

  74. Carlsson N, Gustafsson H, Thörn C, Olsson L, Holmberg K (2014) Åkerman B 205:339

    Google Scholar 

  75. Bass JD, Grosso D, Boissiere C, Belamie E, Coradin T, Sanchez C (2007) Chem Mater 19:4349

    Article  Google Scholar 

  76. Malfatti L, Bellino MG, Innocenzi P, Soler-Illia GJAA (2009) Chem Mater 21:2763

    Article  Google Scholar 

  77. Bellino MG, Tropper I, Duran H, Regazzoni AE, Soler-Illia GJAA (2010) Small 6:1221

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Slovenian Research Agency (ARRS) for Young researchers (1000-08-310045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Lobnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frančič, N., Košak, A. & Lobnik, A. Immobilisation of organophosphate hydrolase on mesoporous and Stöber particles. J Sol-Gel Sci Technol 79, 497–509 (2016). https://doi.org/10.1007/s10971-016-4068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4068-2

Keywords

Navigation