Skip to main content
Log in

Grain size-induced structural, magnetic and magnetoresistance properties of Nd0.67Ca0.33MnO3 nanocrystalline thin films

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The effects of grain size (G S) on the structural, magnetic and magnetoresistance properties of sol–gel-derived Nd0.67Ca0.33MnO3 (NCMO) nanocrystalline thin films were investigated. To change the G S of the NCMO samples, the annealing temperature (T A) was changed from 600 to 800 °C. All the prepared samples were confirmed as hexagonal single-phased polycrystalline structure. The average nanocrystalline size and G S were increased with increasing T A. The range of the G S was approximately 25–40, 50–65 and 75–90 nm for the NCMO samples annealed at T A = 600, 700 and 800 °C, respectively. As the G S increased, the metal–insulator transition temperature, T MI, and the paramagnetic–ferromagnetic transition temperature, T C, also increased including the ferromagnetic response. The magnetoresistance, MR, values were found to increase with increasing the G S at any annealing temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krishna DC, Y Kalyana Lakshmi, Lakshmi K, Sreedhar B, Venugopal Reddy P (2009) Solid State Sci 11:1312–1318

    Article  Google Scholar 

  2. Venkataiah G, Venugopal Reddy P (2005) Solid State Commun 136:114–119

    Article  Google Scholar 

  3. Goktas A, Aslan F, Mutlu IH (2012) J Mater Sci Mater Electron 23:605–611

    Article  Google Scholar 

  4. Zarbali M, Göktaş A, Mutlu IH, Kazan S, Şale AG, Mikailzade F (2012) J Supercond Nov Magn 25:2767–2770

    Article  Google Scholar 

  5. Goktas A, Mutlu IH, Kawashi A (2012) Thin Solid Films 520:6138–6144

    Article  Google Scholar 

  6. Gencer H, Gunes M, Goktas A, Babur Y, Mutlu IH, Atalay S (2008) J Alloys Compd 465:20–23

    Article  Google Scholar 

  7. Gencer H, Gunes M, Goktas A, Babur Y, Mutlu IH, Atalay S (2008) Int J Mod Phys B 22:497–506

    Article  Google Scholar 

  8. Daniel H, Chen YS, Song MY, Chuang CH, Lin M-T, Wu WF, Lin JG (2010) Appl Phys Lett 96:041914

    Article  Google Scholar 

  9. Zener C (1951) Phys Rev 82:403

    Article  Google Scholar 

  10. Coey M (2004) Nature 430:155–157

    Article  Google Scholar 

  11. Zhong W, Chen W, Ding WP, Zhang N, Hu A, Du YW, Yan QJ (1999) J Magn Magn Mater 195:112–118

    Article  Google Scholar 

  12. Yang SY, Kuang WL, Liou Y, Tse WS, Lee SF, Yao YD (2004) J Magn Magn Mater 268:326–331

    Article  Google Scholar 

  13. Rodriguez-Martinez LM, Attfield JP (1996) Phys Rev B 54:R15622

    Article  Google Scholar 

  14. Ghosh K, Ogale SB, Ramesh R, Greene RL, Venkatesan T, Gapchup KM, Bathe R, Patil SI (1999) Phys Rev B 59:533

    Article  Google Scholar 

  15. Hwang HY, Cheong SW, Ong NP, Batlogg B (1996) Phys Rev Lett 77:2041

    Article  Google Scholar 

  16. Mahesh R, Mahendiran R, Raychaudhuri AK, Rao CNR (1996) Appl Phys Lett 68:2291

    Article  Google Scholar 

  17. Sanchez RD, Rivas J, Vazquez-Vazquez C, Lopex-Quintela A, Causa MT, Tovar M, Oseroff S (1996) Appl Phys Lett 68:134

    Article  Google Scholar 

  18. Sudheendra L, Chinh HD, Raju AR, Raychaudhuri AK, Rao CNR (2002) Solid State Commun 122:53–57

    Article  Google Scholar 

  19. Goktas A, Aslan F, Yasar E, Mutlu IH (2012) J Mater Sci Mater Electron 23:1361–1366

    Article  Google Scholar 

  20. Göktaş A, Mutlu İH (2014) J Sol–Jel Sci Tech 69:120–129

    Article  Google Scholar 

  21. Goktas A, Aslan F, Mutlu IH (2014) J Alloys Compd 615:765–778

    Article  Google Scholar 

  22. Siwach PK, Singh HK, Srivastava ON (2006) J Phys Condens Matter 18:9783

    Article  Google Scholar 

  23. Baykal A, Kavas H, Durmuş Z, Demir M, Kazan S, Topkaya R, Toprak M (2010) Cent Eur J Chem 8:633–638

    Google Scholar 

  24. Štefan C, Vladimír Š, Edmund D, Agáta D, Marián R, Jozef L, Marianna Š (2013) Appl Surf Sci 269:98–101

    Article  Google Scholar 

  25. Tikhii AA, Gritskih VA, Kara-Murza SV, Korchikova NV, Nikolaenko YuM, Revenko YuF, Reshidova I, Zhikharev IV (2014) Low Temp Phys 40:756–761

    Article  Google Scholar 

  26. Ewe LS, Jemat A, Lim KP, Abd-Shukor R (2013) Phys B 416:17–22

    Article  Google Scholar 

  27. Reshi HA, Pillai S, Shelke V (2014) J Mater Sci Mater Electron 25:3795–3800

    Article  Google Scholar 

  28. Sarkar T, Kamalakar MV, Raychaudhuri AK (2012) New J Phys 14:033026

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Higher Education Council of Turkey (YOK). The authors are grateful to Prof. Dr. Yasuji Yamada and Dr. Funaki Shuhei, Department of Physics and Materials, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan, for hosting and guiding Abdullah Göktaş during his scientific fellowship at Shimane University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Göktaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göktaş, A., Tumbul, A. & Aslan, F. Grain size-induced structural, magnetic and magnetoresistance properties of Nd0.67Ca0.33MnO3 nanocrystalline thin films. J Sol-Gel Sci Technol 78, 262–269 (2016). https://doi.org/10.1007/s10971-016-3960-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3960-0

Keywords

Navigation