Skip to main content
Log in

Effect of the TMCS/hydrogel volume ratio on physical properties of silica aerogels based on fly ash acid sludge

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The silica aerogels based on the fly ash acid sludge were successfully synthesized using ethanol (EtOH)/trimethylchlorosilane (TMCS)/n-hexane as surface modification agent via ambient pressure drying. The surface modification of hydrogels was a crucial step during the processing which preserved mesopores structure in ambient pressure drying. It was found that the structure and physical properties of silica aerogels dependent on the TMCS/hydrogel volume ratio. The results indicated that the specific density decreased with an increase in the TMCS/hydrogel volume ratio. The silica aerogels modified with TMCS (volume ratio = 1) presented good performance with the specific surface area (830 m2/g), bulk density (0.072 g/cm3), contact angle (146°), and the average pore size (10.7 nm).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kocon L, Despetis F, Phalippou J (1998) J Non-Cryst Solids 22:96–100

    Article  Google Scholar 

  2. Kim GS, Hyun SH (2003) J Non-Cryst Solids 320:125–132

    Article  Google Scholar 

  3. Rao AV, Bhagat SD (2004) Solid State Sci 6:945–952

    Article  Google Scholar 

  4. Bhagat SD, Kim YH, Ahn YS, Yeo JG (2007) Appl Surf Sci 25:33231–33236

    Google Scholar 

  5. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York

    Book  Google Scholar 

  6. Rassy HEL, Pierre AC (2005) J Non-Cryst Solids 351:1603–1610

    Article  Google Scholar 

  7. da Pinto da Cunha J, Neves F, Lopes MI (2000) Nucl Instrum Methods Phys Res A 452:401–421

    Article  Google Scholar 

  8. Yoldas BE, Annen MJ, Bostaph J (2000) Chem Mater 12:2475–2484

    Article  Google Scholar 

  9. Smirnova I, Suttiruengwong S, Arlt W (2004) J Non-Cryst Solids 350:54–60

    Article  Google Scholar 

  10. Tamon H, Kitamura T, Okazaki M (1998) J Colloid Interface Sci 197:353–359

    Article  Google Scholar 

  11. Schmidt M, Schwertfeger F (1998) J Non-Cryst Solids 225:364–368

    Article  Google Scholar 

  12. Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2003) Appl Surf Sci 206:262–270

    Article  Google Scholar 

  13. Rassy HEL, Buisson P, Bouali B, Perrard A, Pierre AC (2003) Langmuir 19:358–363

    Article  Google Scholar 

  14. Rao AV, Pajonk GM, Nadargi DY, Koebel MM (2011) In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 21–45

    Google Scholar 

  15. Schwertfeger F, Frank D, Schmidt M (1998) J Non-Cryst Solids 225:24–29

    Article  Google Scholar 

  16. Lee CJ, Kim GS, Hyun SH (2002) J Mater Sci 37:2237–2241

    Article  Google Scholar 

  17. Rao AV, Rao AP, Kulkarni MM (2004) J Non-Cryst Solids 350:224–229

    Article  Google Scholar 

  18. Bhagat SD, Kim YH, Ahn YS, Yeo JG (2006) Microporous Mesoporous Mater 96:237–244

    Article  Google Scholar 

  19. Rao AV, Pajonk GM, Bangi UK, Rao AP, Koebel MM (2011) In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 103–124

    Chapter  Google Scholar 

  20. Wu K (1994) J Henan Urban Constr Jr Coll 3:85–88

    Google Scholar 

  21. Wei CD, Luo F, Jiang YS, Xue B, Sun YB, Li FF, Gao Q (2012) CN 201210288939.3

  22. Prassas M, Phalippou J, Zarzycki J (1984) J Mater Sci 19:1656–1665

    Article  Google Scholar 

  23. Li WC, Lu AH, Guo SC (2002) J Colloid Interface Sci 254:153–157

    Article  Google Scholar 

  24. Bhagat SD, Kim YH, Suh KH, Ahn YS, Yeo JG, Han JH (2008) Microporous Mesoporous Mater 112:504–509

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant Nos. 41472035 and 51304080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cundi Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Li, N. & Wei, C. Effect of the TMCS/hydrogel volume ratio on physical properties of silica aerogels based on fly ash acid sludge. J Sol-Gel Sci Technol 78, 279–284 (2016). https://doi.org/10.1007/s10971-015-3954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3954-3

Keywords

Navigation