Skip to main content
Log in

Positive effects of Al3+ partially substituted by Co2+ cations on the catalytic performance of Co1+x Al2−x O4 (x = 0–0.2) for methane combustion

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Co1+x Al2−x O4 (x = 0–0.2) catalysts were prepared by sol–gel method using citric acid as a chelating agent calcined at 1100 °C and then investigated for methane combustion. The catalytic activity of CoAl2O4 was significantly enhanced after Al3+ partially substituted by Co2+ cations in methane combustion. X-ray diffraction showed that all the Co1+x Al2−x O4 (x = 0–0.2) samples displayed a spinel-type single phase. Raman spectroscopy deduced that Al3+ partially substituted by Co2+ cations created structural defects and lattice distortion, which was indicated to be favorable for the formation of oxygen vacancy and weakening the bond strength of Al–O. X-ray photoelectron spectroscopy revealed that the excellent catalytic activity for methane combustion may be attributed to the active octahedral coordinated Co3+ cations and surface oxygen vacancies, especially the active octahedral coordinated Co3+ cations predominantly determined for methane combustion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anand G, Kennedy L, Vijaya J, Kaviyarasan K, Sukumar M (2015) Ceram Int 41:603–615

    Article  Google Scholar 

  2. Duan X, Pan M, Yu F, Yuan D (2011) J Alloys Compd 509:1079–1083

    Article  Google Scholar 

  3. Gul IH, Maqsood A, Naeem M, Naeem Ashiq M (2010) J Alloys Compd 507:201–206

    Article  Google Scholar 

  4. Arumugam D, Kalaignan GP, Manisankar P (2008) Solid State Ion 179:580–586

    Article  Google Scholar 

  5. Wu C, Wang Z, Wu F, Chen L, Huang X (2001) Solid State Ion 144:277–285

    Article  Google Scholar 

  6. Russo N, Fino D, Saracco G, Specchia V (2007) Catal Today 119:228–232

    Article  Google Scholar 

  7. Pinheiro AL, Pinheiro AN, Valentini A, Filho JM, de Sousa F, de Sousa JR (2009) Catal Commun 11:11–14

    Article  Google Scholar 

  8. Vegten N, Baidya T, Krumeich F, Kleist W, Baiker A (2010) Appl Catal B: Environ 97:398–406

    Article  Google Scholar 

  9. Chen J, Shi W, Zhang X, Di YH, Li D, Li J (2011) Environ Sci Technol 45:8491–8497

    Article  Google Scholar 

  10. Chen J, Shi W, Yang S, Di YH, Li J (2011) J Phys Chem C 115:17400–17408

    Article  Google Scholar 

  11. Borg RJ, Dienes GJ (1992) The physical chemistry of solids. Academic, San Diego

    Google Scholar 

  12. Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge, New York

    Book  Google Scholar 

  13. Bersuker IB (1996) Electronic structure and properties of transition metal compounds. Wiely, New York

    Google Scholar 

  14. Zwinkels M, Järås G, Menon PG, Menon G (1993) Catal Rev Sci Eng 35:319–358

    Article  Google Scholar 

  15. McCarty JG, Gusman M, Lowe DM, Hildenbrand DL, Lau KN (1999) Catal Today 47:5–17

    Article  Google Scholar 

  16. Li H, Lu G, Qiao D, Wang Y, Guo Y (2011) Catal Lett 141:452–458

    Article  Google Scholar 

  17. Liotta LF, Carlo GD, Pantaleo G, Deganello G (2007) Appl Catal B: Environ 70:314–322

    Article  Google Scholar 

  18. Xiao T, Ji S, Wang H, Coleman KS (2001) J Mol Catal A Chem 175:111–123

    Article  Google Scholar 

  19. Buxbaum G (1993) Industrial inorganic pigments. Wiley-VCH, Weinheim

    Google Scholar 

  20. Akdemir S, Ozel E, Suvaci E (2011) Ceram Int 37:863–870

    Article  Google Scholar 

  21. Chen ZZ, Shi EW, Li WJ, Zheng YQ, Zhuang JY, Xiao B, Tang LA (2004) Mater Sci Eng B 107:217–223

    Article  Google Scholar 

  22. Chandradass J, Balasubramanian M, Kim KH (2010) J Alloys Compd 506:395–399

    Article  Google Scholar 

  23. Wang C, Liu S, Liu L, Bai X (2006) Mater Chem Phys 96:361–370

    Article  Google Scholar 

  24. Zawadzkia M, Walerczyk W, López-Suárez FE, Illán-Gómez MJ, Bueno-López A (2011) Catal Commun 12:1238–1241

    Article  Google Scholar 

  25. Stelmachowski P, Maniak G, Kaczmarczyk J, Zasada F, Piskorz W, Kotarba A, Sojka Z (2014) Appl Catal B Environ 146:105–111

    Article  Google Scholar 

  26. Voss M, Borgmann D, Wedler G (2002) J Catal 212:10–21

    Article  Google Scholar 

  27. Jongsomjit B, Panpranot J, Goodwin G (2001) J Catal 204:98–109

    Article  Google Scholar 

  28. Choudhary VR, Uphade BS, Pataskar SG (2002) Appl Catal A Gen 227:29–41

    Article  Google Scholar 

  29. Feng S, Yang W, Wang Z (2011) Mater Sci Eng B 176:1509–1512

    Article  Google Scholar 

  30. Jiang Z, Hao Z, Yu J, Hou H, Hu C, Su J (2005) Catal Lett 99:157–163

    Article  Google Scholar 

  31. Jiang Z, Yu J, Cheng J, Xiao T, Jones MO, Hao Z, Edwards PP (2010) Fuel Process Technol 91:97–102

    Article  Google Scholar 

  32. Ouahdi N, Guillemet S, Demai J, Durand B, Er Rakho L, Moussa R, Samdi A (2005) Mater Lett 59:240–334

    Article  Google Scholar 

  33. Shannon RD (1976) Acta Cryst 32:751–767

    Article  Google Scholar 

  34. Rousseau DL, Bauman RP, Porto PS (1981) J Raman Spectrosc 10:253–290

    Article  Google Scholar 

  35. Kock LD, De Waal D (2007) J Raman Spectrosc 38:1480–1487

    Article  Google Scholar 

  36. Bouchard M, Gambardella A (2010) J Raman Spectrosc 41:1477–1485

    Article  Google Scholar 

  37. Kunal BM, Pooja YR (2015) Inorg Chem 54:1543–1555

    Article  Google Scholar 

  38. Lou Y, Ma J, Cao X, Wang L, Dai Q, Zhao Z, Cai Y, Zhan W (2014) ACS Catal 4:4143–4152

    Article  Google Scholar 

  39. Pawlak DA, Wozniak K, Frukacz Z, Barr TL, Fiorentino D, Seal S (1999) J Phys Chem B 103:1454–1461

    Article  Google Scholar 

  40. Bai B, Li J (2014) ACS Catal 4:2753–2762

    Article  Google Scholar 

  41. Omata K, Takada T, Kasahara S, Yamada M (1996) Appl Catal A Gen 146:255–267

    Article  Google Scholar 

  42. Kirchnerova J, Alifanti M, Delmon B (2002) Appl Catal A Gen 231:65–80

    Article  Google Scholar 

  43. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458:746–749

    Article  Google Scholar 

  44. Maniaka G, Stelmachowski P, Kotarba A, Sojka Z, Rico-Pérez V, Bueno-López A (2013) Appl Catal B Environ 136–137:302–307

    Article  Google Scholar 

  45. Mitsuyasu H, Nonaka Y, Eguchi K, Arai H (1997) J Solid State Chem 129:74–81

    Article  Google Scholar 

  46. Deng J, Dai H, Jiang H, Zhang L, Wang G, He H (2010) Environ Sci Technol 44:2618–2623

    Article  Google Scholar 

  47. Deng J, Zhang L, Dai H, He H (2009) Appl Catal B 89:87–96

    Article  Google Scholar 

  48. Xu J, Li P, Song X, He C, Yu J, Han YF (2010) J Phys Chem Lett 1:1648–1654

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Major University Natural Science Research Project of Anhui Province (KJ2015ZD15) and the National Natural Science Foundation of China (21377005) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojie Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, W., Zhou, Z., Zhao, D. et al. Positive effects of Al3+ partially substituted by Co2+ cations on the catalytic performance of Co1+x Al2−x O4 (x = 0–0.2) for methane combustion. J Sol-Gel Sci Technol 78, 144–150 (2016). https://doi.org/10.1007/s10971-015-3910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3910-2

Keywords

Navigation