Skip to main content
Log in

Investigation of photocatalytic and dielectric behavior of LaFeO3 nanoparticles prepared by microwave-assisted sol–gel combustion route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

LaFeO3 (LFO) nanoparticles were prepared by microwave-assisted sol–gel combustion method with an aid of glycine as fuel. The calcined LFO sample was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), EDAX and UV–Vis absorption spectroscopy. Single-phase orthorhombic structure is confirmed by XRD, and data is well fitted using Rietveld refinement by Full-Prof suite. FTIR study displays vibrational modes related to orthoferrites perovskite LaFeO3. SEM images depict fine particles size, and stoichiometry of La, Fe and O in LFO is verified by EDAX. The photodegradation behavior of LFO was evaluated by the photocatalytic decolorization of the methylene blue under natural light as well as by UV irradiation for different time. To check the potential of LaFeO3 as dielectric, dielectric constant as a function of frequency and temperature was studied. Dielectric constant is found to decrease with increase in frequency indicates dispersive behavior in low-frequency region. Temperature versus dielectric constant plots for LFO at 100 kHz give dielectric anomaly around 450 °C. This anomaly may be due to antiferromagnetic transition (T N) temperature of LFO. The present study depicts the potential of LFO to use as efficient photocatalyst and applicable dielectric materials.

Graphical Abstract

Very good quality and single-phase LaFeO3 (LFO) nanoparticles were prepared first time by microwave-assisted sol–gel combustion method with an aid of glycine as fuel. The photodegradation behavior of LFO was evaluated by the photocatalytic decolorization of the methylene blue (MB) under UV–visible light irradiation. Qualitative understating of correlation between photodegradation ability and dielectric behavior of LFO was established. The potential of LaFeO3 as efficient photocatalyst and dielectric materials is investigated in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ju L, Chen Z, Fang L, Dong W, Zheng F, Shen M (2011) J Am Ceram Soc 94:3418

    Article  Google Scholar 

  2. Siemons M, Leifert A, Simon U (2007) Adv Funct Mater 17:2189

    Article  Google Scholar 

  3. Molenda J, Swierczek K, Zajac W (2007) J Power Sources 173:657

    Article  Google Scholar 

  4. Martinelli G, Carott MC (1999) Sens Actuators B 55:99

    Article  Google Scholar 

  5. Schmool DS, Keller N, Guyot M, Krishnan R, Tessier M (1999) J Appl Phys 86:5712

    Article  Google Scholar 

  6. Yang J, Zhong H, Li M, Zhang L, Zhang Y (2009) React Kinet Catal Lett 97:269

    Article  Google Scholar 

  7. Kanhere P, Nisar J, Tang Y, Pathak B, Ahuja R, Zheng J, Chen Z (2012) J Phys Chem C 116:22767

    Article  Google Scholar 

  8. Hou L, Sun G, Liu K, Li Y, Gao FJ (2006) J Sol–Gel Sci Technol 40(1):9

    Article  Google Scholar 

  9. Parida KM, Reddy KH, Martha S, Das DP, Biswal N (2010) Int J Hydrogen Energy 35(22):12161

    Article  Google Scholar 

  10. Hu R, Li C, Wang X, Sun Y, Jia H, Su H, Zhang Y (2012) Catal Commun 29:35

    Article  Google Scholar 

  11. Tang P, Fu M, Chen H, Cao F (2011) Mater Sci Forum 694:150

    Article  Google Scholar 

  12. Li S, Jing L, Fu W, Yang L, Xin B, Fu H (2007) Mater Res Bull 42:203

    Article  Google Scholar 

  13. Thirumalairajan S, Girija K, Hebalkar NY, Mangalaraj D, Viswanathan C, Ponpandian N (2013) RSC Adv 3:7549

    Article  Google Scholar 

  14. Wei Z, Wang Y, Liu J, Xiao C, Zeng W, Ye S (2013) J Mater Sci 48:1117

    Article  Google Scholar 

  15. Patil BN, Acharya SA (2014) Adv Mater Lett 5:113

    Google Scholar 

  16. Gawande SB, Thakare SR (2013) Int Nano Lett 3:37

    Article  Google Scholar 

  17. Chakrabarti S, Datta BK (2004) J Hazard Mater 112:269

    Article  Google Scholar 

  18. Gouvea CAK, Wypych F, Moraes SG, Duran N, Nagata N, Zamora P (2000) Chemosphere 40:433

    Article  Google Scholar 

  19. Shrivastava VS (2012) Arch Appl Sci Res 4:1244

    Google Scholar 

  20. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) J Hazard Mater B 89:303

    Article  Google Scholar 

  21. Koferstein R, Ebbinghaus SG (2013) Solid State Ion 231:43

    Article  Google Scholar 

  22. Wang D, Gong M (2011) J Appl Phys 109:114304

    Article  Google Scholar 

  23. Idrees M, Nadeem M, Mehmood M, Atif M, Chae KH, Hassan MM (2011) J Phys D Appl Phys 44:105401

    Article  Google Scholar 

  24. Wang D, Chu X, Gong M (2006) Nanotechnology 17:5501

    Article  Google Scholar 

  25. Gosavi PV, Biniwale RB (2010) Mater Chem Phys 119:324

    Article  Google Scholar 

  26. Shen H, Cheng G, Wu A, Xu J, Zhao J (2009) Phys Status Solidi A 206:1420

    Article  Google Scholar 

  27. Gaikwad VM, Acharya SA (2015) RSC Adv 5:14366

    Article  Google Scholar 

  28. Sivakumar M, Gedanken A, Zhong W, Jiang YH, Du YW, Brukental I, Bhattacharya D, Yeshurun Y, Nowik I (2004) J Mater Chem 14:764

    Article  Google Scholar 

  29. Ahmed MA, Seoudi R, El-dek SI (2005) J Mol Struct 754:41

    Article  Google Scholar 

  30. Bouras P, Lianos P (2005) J Appl Electrochem 35:831

    Article  Google Scholar 

  31. Wu T, Liu G, Zhan J, Hidaka H, Serpone N (1998) J Phys Chem B 102:5845

    Article  Google Scholar 

  32. Chen CC, Lu CS, Chung YC, Jan JL (2007) J Hazard Mater 141:520

    Article  Google Scholar 

  33. Matsui T, Tanaka H, Fujimura N, Ito T, Mabuchi H, Morii K (2002) Appl Phys Lett 81:2764

    Article  Google Scholar 

  34. Chakraverty S, Matsud T, Ogawa N, Wadati H, Ikenaga E, Kawasaki M, Tokura Y, Hwang HY (2013) Appl Phys Lett 103:142416

    Article  Google Scholar 

  35. Xia W, Wang CC, Liu P, Ye JL, Ni W (2013) Curr Appl Phys 13:1743

    Article  Google Scholar 

  36. Yang H, Zhang JX, Lin GJ, Xian T, Jiang JL (2013) Adv Powder Technol 24:242

    Article  Google Scholar 

  37. Huang S, Shi L, Tian Z, Yuan S, Wang L, Gong G, Yin C, Zerihun G (2015) Ceram Int 41:691

    Article  Google Scholar 

  38. Ding J, Lü X, Shu H, Xie J, Zhang H (2010) Mater Sci Eng B 171:31

    Article  Google Scholar 

  39. Kaur P, Sharma KK, Kumar R, Pandit R (2013) Int J Mod Phys Conf Ser 22:179

    Article  Google Scholar 

  40. Köferstein R, Jäger L, Ebbinghaus SG (2013) Solid State Ion 249–250:1

    Article  Google Scholar 

  41. Bhat I, Husain S, Khan W, Patil SI (2013) Mater Res Bull 48:4506

    Article  Google Scholar 

  42. Godara S, Sinha N, Ray G, Kumar B (2014) J Asian Ceram Soc 2:416

    Article  Google Scholar 

  43. Cheng ZX, Shen H, Xu JY, Liu P, Zhang SJ, Wang JL, Wang XL, Dou SX (2012) J Appl Phys 111:034103

    Article  Google Scholar 

  44. Tang P, Sun H, Chen H, Cao F (2012) Curr Nanosci 8:64

    Article  Google Scholar 

  45. Sun ZH, Dai S, Zhou YL, Cao LZ, Chen ZH (2008) Thin Solid Films 516:7433

    Article  Google Scholar 

  46. Sun ZH, Cheng BL, Dai S, Cao LZ, Zhou YL, Jin KJ, Chen ZH, Yang GZ (2006) J Phys D Appl Phys 39:2481

    Article  Google Scholar 

  47. Zhu L, Sakai N, Yanoh T, Yano S, Wada N, Takeuchi H, Kurokawa A, Ichiyanagi Y (2012) J Phys Conf Ser 352:012021

    Article  Google Scholar 

  48. Jaiswal A, Das R, Maity T, Poddar P (2011) J Appl Phys 110:124301

    Article  Google Scholar 

  49. Sultan K, Ikram M, Asokan K (2014) Vacuum 99:251

    Article  Google Scholar 

  50. Mir SA, Ikram M, Asokan K (2014) Optik 125:6903

    Article  Google Scholar 

  51. Lee H-S, Woo C-S, Youn B-K, Kim S-Y, Oh S-T, Sung Y-E, Lee H-I (2005) Top Catal 35:255

    Article  Google Scholar 

  52. P. Li, H. Abe, J. Ye, Int J Photoenergy (2014) Vol 2014, Article ID 380421, p 6. http://dx.doi.org/10.1155/2014/38042

  53. Pavlov VV, Akbashev AR, Kalashnikova AM, Rusakov VA, Kaul AR, Bayer M, Pisarev RV (2012) J Appl Phys 111:056105

    Article  Google Scholar 

  54. Zainullina VM, Zhukov VP, Korotin MA (2015) J Photochem Photobiol C 22:58

    Article  Google Scholar 

  55. Rao BP, Rao KH (1997) J Mater Sci 32:6049

    Article  Google Scholar 

  56. Abdeen AM (1999) J Magn Magn Mater 192:121

    Article  Google Scholar 

  57. Bhavikatti AM, Kulkarni S, Lagashetty A (2011) Int J Eng Sci Technol 3:687

    Google Scholar 

  58. Yen F, Lorenz B, Sun YY, Chu CW, Bezmaternykh LN, Vasiliev AN (2006) Phys Rev B 73:054435

    Article  Google Scholar 

  59. Younas M, Nadeem M, Atif M, Grossinger R (2011) J Appl Phys 109:093704

    Article  Google Scholar 

  60. Mekap A, Das PR, Choudhary RNP (2013) J Mater Sci Mater Electron 24:4757

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors VMG wants to give thank UGC, New Delhi, for providing financial assistance through Rajiv Gandhi National fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita A. Acharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, V.M., Sheikh, J.R. & Acharya, S.A. Investigation of photocatalytic and dielectric behavior of LaFeO3 nanoparticles prepared by microwave-assisted sol–gel combustion route. J Sol-Gel Sci Technol 76, 27–35 (2015). https://doi.org/10.1007/s10971-015-3746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3746-9

Keywords

Navigation