Skip to main content

Advertisement

Log in

A fast green synthesis of Ag nanoparticles in carboxymethyl cellulose (CMC) through UV irradiation technique for antibacterial applications

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silver nanoparticles embedded in a carboxymethyl cellulose matrix (AgNPs/CMC) were synthesized by a UV irradiation technique. The successful formation of AgNPs/CMC was examined using UV–Vis spectroscopy, XPS, XRD, TEM, and FTIR. The factors in the preparation process that affected the final products were extensively studied. Thus, 5.0 mM AgNO3, 0.5 g l−1 CMC, and exposure to UV light for 2.5 min provide excellent combinations to accomplish the AgNPs/CMC formation. Measurements of optical spectra showed that the surface plasmon resonance was localized around 426 nm when the reaction mixture exposed to UV light for 0.5 min; that is monotonically blue shifted to 403 nm up to 2.5 min exposure time. This is manifested in a quick reduction of Ag+ into smaller Ag nanoparticles. The IR analysis indicated that hydroxyl and carboxylate groups in CMC were included in coordination with the Ag+ ions through displacement of one proton. Upon absorbing UV light, the cellulose hydroxyl and carboxymethylic groups get excited, which reduce Ag+ ions to Ag nanoparticles. The TEM image for the optimal designed AgNPs/CMC sample confirmed that AgNPs are formed with many individual spherical shapes and an average diameter of 15.5 nm. This AgNPs/CMC sample showed promising antibacterial properties toward E. coli.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Babu VR, Kim C, Kim S, Ahn C, Lee Y (2010) Development of semi-interpenetrating carbohydrate polymeric hydrogels embedded silver nanoparticles and its facile studies on E. coli. Carbohydr Polym 81:196–202

    Article  Google Scholar 

  2. Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82:933–941

    Article  Google Scholar 

  3. Biffis A, Orlandi N, Corain B (2003) Microgel-stabilized metal nanoclusters: size control by microgel nanomorphology. Adv Mater 15:1551–1555

    Article  Google Scholar 

  4. Daniel MC, Astrue D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  5. Kiesow A, Morris JE, Radehaus C, Heilmann A (2003) Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94:6988–6990

    Article  Google Scholar 

  6. Vaseashta A, Dimova-Malinovska D (2005) Nanostructured and nanoscale devices, sensors and detectors. Sci Technol Adv Mater 6:312–318

    Article  Google Scholar 

  7. Xu S, Zhang J, Paquet C, Lin Y, Kumacheva E (2003) From hybrid microgels to photonic crystals. Adv Funct Mater 13:468–472

    Article  Google Scholar 

  8. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    Article  Google Scholar 

  9. Bajpai SK, Mohan YM, Bajpai M, Tankhiwale R, Thomas V (2007) Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol 7:2994–3010

    Article  Google Scholar 

  10. Esumi K, Suzuki A, Yamahira A, Torigoe K (2000) Role of poly (amidoamine) dendrimers for preparing nanoparticles of gold platinum and silver. Langmuir 16:2604–2608

    Article  Google Scholar 

  11. Esumi K, Isono R, Yoshimura T (2004) Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243

    Article  Google Scholar 

  12. Mandal S, Phadtare S, Sastry M (2005) Interfacing biology with nanoparticles. Curr Appl Phys 5:118–127

    Article  Google Scholar 

  13. Božanić DK, Dimitrijević-Branković S, Bibić N, Luyt AS, Djoković V (2011) Silver nanoparticles encapsulated in glycogen biopolymer: morphology, optical and antimicrobial properties. Carbohydr Polym 83:883–890

    Article  Google Scholar 

  14. Hang AT, Tae B, Park JS (2010) Non-woven mats of poly (vinyl alcohol)/chitosan blends containing silver nanoparticles: fabrication and characterization. Carbohydr Polym 82:472–479

    Article  Google Scholar 

  15. Kora AJ, Sashidhar RB, Arunachalam J (2010) Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82:670–679

    Article  Google Scholar 

  16. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389

    Article  Google Scholar 

  17. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  Google Scholar 

  18. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 25:13940–13941

    Article  Google Scholar 

  19. Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    Article  Google Scholar 

  20. Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130

    Article  Google Scholar 

  21. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26:131–138

    Article  Google Scholar 

  22. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148

    Article  Google Scholar 

  23. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  Google Scholar 

  24. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  Google Scholar 

  25. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1884

    Google Scholar 

  26. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:3–6

    Article  Google Scholar 

  27. Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk JM, Lau GKK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262

    Google Scholar 

  28. Medina F, Chimentao RJ, Kirm I, Rodriguez X, Cesteros Y, Salagre P, Sueiras JE, Fierro JLG (2005) Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles. Appl Surf Sci 252:793–800

    Article  Google Scholar 

  29. Fuller SB, Wilhelm EJ, Jacobson JA (2002) Monolithic microfabricated valves and pumps by multilayer soft lithography. J Microelectromech Syst 11:54–60

    Article  Google Scholar 

  30. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  Google Scholar 

  31. Chen J, Wang J, Zhan X, Jin Y (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108:421–424

    Article  Google Scholar 

  32. Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan GT (2004) Preparation, surface modification and characterisation of solution cast starch PVA blended films. Polym Test 23:17

    Article  Google Scholar 

  33. Whelan AM, Brennan ME, Blau WJ, Kelly JM (2004) Enhanced third-order optical nonlinearity of silver nanoparticles with a tunable surface plasmon resonance. J Nanosci Nanotechnol 4:66–68

    Article  Google Scholar 

  34. Silvert P-Y, Herrera-Urbina R, Tekaia-Elhsissen K (1997) Preparation of col- loidal silver dispersions by polyol process. J Mater Chem 7:293–299

    Article  Google Scholar 

  35. Aziz SB, Abidi ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane. Express Polym Lett 4:300–310

    Article  Google Scholar 

  36. Itakura T, Torigoe K, Esumi K (1995) Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir 11:41291

    Article  Google Scholar 

  37. Foss CA, Hornyak GL, Stockert JA, Martin CR (1994) Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape. J Phys Chem 98:2963–2971

    Article  Google Scholar 

  38. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–5067

    Article  Google Scholar 

  39. Othman IA (2013) Synthesis and characterization of Ag0/PVA nanoparticles viaphoto- and chemical reduction methods for antibacterial study. Colloids Surf A 436:922–929

    Article  Google Scholar 

  40. Li D, Komarneniw S (2006) J Am Ceram Soc 89:1510–1517

    Article  Google Scholar 

  41. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, Berlin, p 535

    Google Scholar 

  42. Gautam A, Ram S (2010) Preparation and thermomechanical properties of Ag-PVA nanocomposite films. Mater Chem Phys 119:266–271

    Article  Google Scholar 

  43. Ram S, Gautam A, Fecht HJ, Cai J, Bansmann H, Behm RJ (2007) A new allotrope structure of silver nanocrystals in anisotropic nucleation and growth in support over planar polymer molecules. Philos Mag Lett 87:361

    Article  Google Scholar 

  44. Chai MN, Isa MIN (2013) The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte. J Cryst Process Technol 28:31003

    Google Scholar 

  45. Chen CJ, Yeh GSY (1991) Radiation-induced crosslinking: III. Effect on the crystalline and amorphous density fluctuations of polyethylene. Colloid Polym Sci 269:353–363

    Article  Google Scholar 

  46. Nawapat D, Thawien W (2013) Effect of UV-treatment on the properties of biodegradable rice starch films. Int Food Res J 20:1313–1322

    Google Scholar 

  47. X-Ray powder diffraction file JCPDS-ICDD (1999) Joint committee on powder diffraction standard-international centre for diffraction data. Swarthmore, PA, (a) 04-0783

  48. Pouretedal HR, Norozi A, Keshavarz MH, Semnani A (2009) Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the decolorization of organic dyes. J Hazard Mater 162:674–681

    Article  Google Scholar 

  49. Pescok RL, Shields LD, Caims T, McWilliam IG (1976) Modern methods of chemical analysis. Wiley, New York

    Google Scholar 

  50. Wang J, Somasundaran P (2005) Adsorption and conformation of CMC at solid–liquid interfaces using spectroscopic, AFM and allied techniques. J Colloid Interface Sci 291:75–83

    Article  Google Scholar 

  51. Donati I, Travan A, Pelillo C, Scarpa T, Coslovi A, Bonifacio A (2009) Polyol synthesis of silver nanoparticles: mechanism of reduction by alditol bearing polysaccharides. Biomacromolecules 10(2):210–213

    Article  Google Scholar 

  52. Lancashire RJ (1987) In: Comprehensive coordination chemistry, vol. 54. Pergamon Press, Oxford

  53. Pushpamalar V, Langford SJ, Ahmad M, Lim YY (2006) Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr Polym 64:312–318

    Article  Google Scholar 

  54. Mallapragada SK, Peppas NA (1996) Mechanism of dissolution of semi-crystalline poly(vinyl alcohol) in water. J Polym Sci B 34:1339–1346

    Article  Google Scholar 

  55. Masquelin T, Obrecht D (2001) A new general three component solution-phase synthesis of 2-amino-1,3-thiazole and 2,4-diamino-1,3-thiazole combinatorial libraries. Tetrahedron 57:153

    Article  Google Scholar 

  56. Sah MM, Joshi PC (1989) Asian, synthesis and antifungal activity of some 2-arylimino-3-phthalimidoacetyl-4-thiazolidinones and their 5-arylidine derivatives. J Chem 1:141

    Google Scholar 

  57. Rastogi Sh, Rutledge V, Gibson Ch, Newcombe D, Branen J, Branen L (2011) Ag colloids and Ag clusters over EDAPTMS-coated silica nanoparticles: synthesis, characterization and antibacterial activity against Escherichia coli. Nanomed Nanotechnol Biol Med 7:305–314

    Article  Google Scholar 

  58. Yoon K, Byeon JH, Park J, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  Google Scholar 

  59. Lara H, Ayala-Nunez N, Turrent L, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621

    Article  Google Scholar 

  60. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TM, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  Google Scholar 

  61. Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO (1974) Antibacterial effects of silver electrodes with weak direct current. Microbial Agents Chemother 6:637–642

    Article  Google Scholar 

  62. Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B 79(2):488–493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Salama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basuny, M., Ali, I.O., El-Gawad, A.A. et al. A fast green synthesis of Ag nanoparticles in carboxymethyl cellulose (CMC) through UV irradiation technique for antibacterial applications. J Sol-Gel Sci Technol 75, 530–540 (2015). https://doi.org/10.1007/s10971-015-3723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3723-3

Keywords

Navigation