Skip to main content
Log in

A new method for elaborating mesoporous SiO2/montmorillonite composite materials

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We report the sol–gel preparation of SiO2/montmorillonite composite materials and the investigation of the effect of the amount of clay and the TEOS concentration on the textural and structural properties of the composites. Pre-swelling of the clay with cetyltrimethyl ammonium results in solids with a larger mesoporous surface area. A decrease in the gel time and an increase in the surface area were observed upon increasing the amount of clay in the reaction medium. These porous solids showed acidic properties, and their acidities were correlated with the amount of the clay mineral. The obtained composites were functionalized by adding manganese, and their catalytic properties were evaluated in the cyclohexene oxidation reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Murray HH (2000) Traditional and new application for kaolin, smectite, and palygorskite: a general over view. Appl Clay Sci 17:207–221

    Article  Google Scholar 

  2. Pinnavaia TJ, Tzou M-S, Landau SD, Raythatha RH (1984) On the pillared and delamination of smectite clay catalysis by polyoxo cations of aluminium. J Mol Catal 27:195–212

    Article  Google Scholar 

  3. Lambert JF, Poncelet G (1997) Acidity in pillared clays: origin and catalytic manifestations. Top Catal 4:43–56

    Article  Google Scholar 

  4. Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14:161–198

    Article  Google Scholar 

  5. Ben Chaabene S, Bergaoui L, Ghorbel A, Lambert JF, Grange P (2003) Acidic properties of a clay prepared from the reaction of zirconyl chloride solution containing sulfate ions with montmorillonite. Appl Catal A-Gen 252:411–419

    Article  Google Scholar 

  6. Sadek OM, Reda SM, Al-Bilali RK (2013) Preparation and characterization of silica and clay–silica core-shell nanoparticles using sol–gel method. Adv Nanoparticles 2:165–175

    Article  Google Scholar 

  7. Dudarko OA, Gunathilake C, Sliesarenko VV, Zub YL, Jaroniec M (2014) Microwave-assisted and conventional hydrothermal synthesis of ordered mesoporous silicas with P-containing functionalities. Colloids Surf A 459:4–10

    Article  Google Scholar 

  8. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  Google Scholar 

  9. El-Toni AM, Habila MA, Ibrahim MA, Labis JP, Al Othman ZA (2014) Simple and facile synthesis of amino functionalized hollow core–mesoporous shell silica spheres using anionic surfactant for Pb(II), Cd(II), and Zn(II) adsorption and recovery. Chem Eng J 251:441–451

    Article  Google Scholar 

  10. Rahman MS, Ambati J, Joshi S, Rankin SE (2014) Incorporation of isolated Ti sites into mesoporous silica thin films by sugar surfactant complexation. Micro Meso Mater 190:74–83

    Article  Google Scholar 

  11. Ganguly SC (2001) Book review: polymer–clay nanocomposites in polymer science. In Pinnavaia TJ, Beall GW (eds) John Wiley & Sons Ltd., Chichester, West Sussex 370 pp. J Inorg Organomet Polym 11: 247–251

  12. Galarneau A, Barodawalla A, Pinnavaia TJ (1994) Porous clay heterostructures formed by gallery-templated synthesis. Nature 374:529–531

    Article  Google Scholar 

  13. Mercier L, Pinnavaia TJ (1998) A functionalized porous clay heterostructure for heavy metal ion (Hg2+) trapping. Micro Meso Mater 20:101–106

    Article  Google Scholar 

  14. Zhu HY, Ding Z, Lu CQ, Lu GQ (2002) Molecular engineered porous clays using surfactants. Appl Clay Sci 20:165–175

    Article  Google Scholar 

  15. Lagaly G, Dékany I (2005) Adsorption on hydrophobized surfaces: clusters and self-organization. Adv Colloid Interface 114–115:189–204

    Article  Google Scholar 

  16. Zhu JX, He HP, Guo JG, Yang D, Xie XD (2003) Arrangement models of alkylammonium cations in the interlayer of HDTMA+ pillared montmorillonites. Chin Sci Bull 48:368–372

    Google Scholar 

  17. Aliouane N, Hammouche A, De Doncker RW, Telli L, Boutahala M, Brahimi B (2002) Investigation of hydration and protonic conductivity of H-montmorillonite. Solid State Ionics 148:103–110

    Article  Google Scholar 

  18. Bérend I, Cases JM, Francois M, Uriot JP, Michot L, Masion A, Thomas F (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+, and Cs+-exchanged forms. Clay Clay Miner 43:324–336

    Article  Google Scholar 

  19. Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurthy M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative Formation of inorganic–organic interfaces in the synthesis of silicate mesostructures. Science 261:1299–1303

    Article  Google Scholar 

  20. Chen CY, Burkett SL, Li HX, Davis ME (1993) Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Mater 2:27–34

    Article  Google Scholar 

  21. Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    Article  Google Scholar 

  22. Zhou CH, Li XN, Ge ZH, Li QW, Tong DS (2004) Synthesis and acid catalysis of nanoporous silica/alumina-clay composites. Catal Today 93–95:607–613

    Article  Google Scholar 

  23. Zapata PA, Belver C, Quijada R, Aranda P, Ruiz-Hitzky E (2013) Silica/clay organo-heterostructures to promote polyethylene-clay nanocomposites by in situ polymerization. Appl Catal A 453:142–150

    Article  Google Scholar 

  24. Li B, Mao H, Li X, Ma W, Liu Z (2009) Synthesis of mesoporous silica-pillared clay by intragallery ammonia-catalyzed hydrolysis of tetraethoxysilane using quaternary ammonium surfactants as gallery templates. J Colloid Interface Sci 336:244–249

    Article  Google Scholar 

  25. Fatimah I, Huda T (2013) Preparation of cetyltrimethylammonium intercalated Indonesian montmorillonite for adsorption of toluene. Appl Clay Sci 74:115–120

    Article  Google Scholar 

  26. Li F, Jiang Y, Xia M, Sun M, Xue B, Ren XA (2010) Novel mesoporous silica–clay composite and its thermal and hydrothermal stabilities. J Porous Mater 17:217–223

    Article  Google Scholar 

  27. Tayade KN, Mishra M (2014) Catalytic activity of MCM-41 and Al grafted MCM-41 for oxidative self and cross coupling of amines. J Mol Catal A Chem 382:114–125

    Article  Google Scholar 

  28. Arzoumanian H, Blanc A, Hartig U, Metzger J (1974) Homogeneous bimetallic catalysis. The selective autoxidation of cyclohexene. Tetrahedron Lett 12:1011–1014

    Article  Google Scholar 

  29. Sakthivel A, Dapurkar SE, Selvam P (2003) Allylic oxidation of cyclohexene over chromium containing mesoporous molecular sieves. Appl Catal A 246:283–293

    Article  Google Scholar 

  30. Mukherjee S, Samanta S, Bhaumik A, Ray BC (2006) Mechanistic study of cyclohexene oxidation and its use in modification of industrial waste organics. Appl Catal B Environ 68:12–20

    Article  Google Scholar 

  31. Jermy BR, Kim SY, Bineesh KV, Selvaraj M, Park DW (2009) Easy route for the synthesis of Fe–SBA-16 at weak acidity and its catalytic activity in the oxidation of cyclohexene. Micro Meso Mater 121:103–113

    Article  Google Scholar 

  32. Tong J, Zhang Y, Li Z, Xia C (2006) Highly effective catalysts of natural polymer supported Salophen Mn(III) complexes for aerobic oxidation of cyclohexene. J Mol Catal A Chem 249:47–52

    Article  Google Scholar 

  33. Ameur N, Bedrane S, Bachir R, Choukchou-Braham A (2013) Influence of nanoparticles oxidation state in gold based catalysts on the product selectivity in liquid phase oxidation of cyclohexene. J Mol Catal A Chem 374–375:1–6

    Article  Google Scholar 

  34. Salavati Niassari M, Farzaneh F, Ghandi M, Turkian L (2000) Oxidation of cyclohexene with tert-butylhydroperoxide catalyzed by manganese(II) complexes included in zeolite Y. J Mol Catal A Chem 157:183–188

    Article  Google Scholar 

  35. Salavati-Niasari M, Salemi P, Davar F (2005) Oxidation of cyclohexene with Tert-butylhydroperoxide and hydrogen peroxide catalysted by Cu(II), Ni(II), Co(II) and Mn(II) complexes of N,N′-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine, supported on alumina. J Mol Catal A Chem 238:215–222

    Article  Google Scholar 

  36. Habibi D, Faraji AR, Arshadi M, Fierro JLG (2013) Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. J Mol Catal A Chem 372:90–99

    Article  Google Scholar 

  37. Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic Press, New York

    Google Scholar 

  38. Modén B, Zhan BZ, Dakka J, Santiesteban JG, Iglesia E (2006) Kinetics and mechanism of cyclohexane oxidation on MnAPO-5 catalysts. J Catal 239:390–401

    Article  Google Scholar 

  39. Salavati-Niasari M (2008) Host (nanopores of zeolite-Y)/guest [manganese(II) with 12-membered tetradentate N2O2, N2S2 and N4 donor macrocyclic ligands] nanocatalysts: flexible ligand synthesis, characterization and catalytic activity. Transit Metal Chem 33:443–452

    Article  Google Scholar 

  40. Gemeay AH, Salem MA, Salem IA (1996) Activity of silica–alumina surface modified with some transition metal ions. Colloids Surf A 117:245–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tesnime Abou Khalil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou Khalil, T., Ben Chaabene, S., Boujday, S. et al. A new method for elaborating mesoporous SiO2/montmorillonite composite materials. J Sol-Gel Sci Technol 75, 436–446 (2015). https://doi.org/10.1007/s10971-015-3716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3716-2

Keywords

Navigation