Skip to main content
Log in

Removal of dyes by photocatalytically active curcumin-sensitized amorphous TiO2 under visible light irradiation

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Curcumin-sensitized amorphous TiO2 (Cur-AMO) was prepared by the sol–gel process followed by modified impregnation using freshly prepared curcumin solution. The final products were studied by several techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, surface area measurement (BET), and UV–Vis diffused reflectance spectroscopy. Experimental results revealed that the presence of curcumin did not affect the amorphous form; however, it caused bathochromic shift and decreased the BET surface area. The products showed not only high adsorption efficiency but also increased photocatalytic activity under visible light irradiation with optimal result at 7.5 wt% curcumin loading. Under visible light irradiation, curcumin molecule could act like dye-sensitizing agent by injecting the electron into the conduction band of amorphous TiO2, leading to photodegradation of pollutant in wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. Govindarajan VS (1980) Crit Rev Food Sci 12:199–301

    Article  Google Scholar 

  2. Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G (2012) Angew Chem Int Ed 51:5308–5332

    Article  Google Scholar 

  3. Qian T, Li K, Gao B, Zhu R, Wu X, Wang S (2013) Spectrosc Acta Part A 116:6–12

    Article  Google Scholar 

  4. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Biochem Pharmacol 75:787–809

    Article  Google Scholar 

  5. Aggarwal BB, Harikumar KB (2009) Int J Biochem Cell Biol 41:40–59

    Article  Google Scholar 

  6. Baum L, Ng A (2004) J Alzheimers Dis 6:367–377

    Google Scholar 

  7. Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011) Int J Immunopharmacol 11:331–341

    Article  Google Scholar 

  8. Sikora E, Bielak-Zmijewska A, Mosieniak G, Piwocka K (2010) Curr Pharm Des 16:884–892

    Article  Google Scholar 

  9. Khafif A, Hurst R, Kyker K, Fliss DM, Gil Z, Medina JE (2005) Otolaryngol Head Neck Surg 132:317–321

    Article  Google Scholar 

  10. Ganesh T, Kim JH, Yoon SJ, Kil BH, Maldar NN, Han JW, Han SH (2010) Mater Chem Phys 123:62–66

    Article  Google Scholar 

  11. Singh U, Verma S, Ghosh HN, Rath MC, Priyadarsini KI, Sharma A, Pushpa KK, Sarkar SK, Mukherjee T (2010) J Mol Catal A 318:106–111

    Article  Google Scholar 

  12. Saha D, Ajimsha RS, Rajiv K, Mukherjee C, Gupta M, Misra P, Kukreja LM (2014) Appl Surf Sci 315:116–123

    Article  Google Scholar 

  13. Hong Y, Yu M, Lin J, Cheng K, Weng W, Wang H (2014) Colloids Surf B 123:68–74

    Article  Google Scholar 

  14. Manzhos S, Giorgi G, Yamashita K (2015) Molecules 20:3371–3388

    Article  Google Scholar 

  15. Wang Q, Chen X, Yu K, Zhang Y, Cong Y (2013) J Hazard Mater 246–247:135–144

    Article  Google Scholar 

  16. Vu D, Li X, Li Z, Wang C (2013) J Chem Eng Data 58:71–77

    Article  Google Scholar 

  17. Kanna M, Wongnawa S, Sherdshoopongse P, Boonsin P (2005) Songklanakarin. J Sci Technol 27:1017–1026

    Google Scholar 

  18. Randorn C, Wongnawa S, Boonsin P (2004) Science Asia 30:149–156

    Article  Google Scholar 

  19. Sriprang P, Wongnawa S, Sirichote O (2014) J Sol-Gel Sci Technol 71:86–95

    Article  Google Scholar 

  20. Buddee S, Wongnawa S, Sirimahachai U, Puetpaibool W (2011) Mater Chem Phys 126:167–177

    Article  Google Scholar 

  21. Buddee S, Wongnawa S, Sriprang P, Sriwong C (2014) J Nanopart Res 16:1–21

    Article  Google Scholar 

  22. Shao P, Tian J, Zhao Z, Shi W, Gao S, Cui F (2015) Appl Surf Sci 324:35–43

    Article  Google Scholar 

  23. Raj KJA, Viswanathan B (2009) Indian J Chem 48A:1378–1382

    Google Scholar 

  24. Baiju KV, Shukla S, Sandhya KS, James J, Warrier KGK (2007) J Phys Chem C 111:7612–7622

    Article  Google Scholar 

  25. Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA (2012) J Mater Sci 47:7515–7521

    Article  Google Scholar 

  26. Yallapu MM, Jaggi M, Chauhan SC (2010) Coll Surf B 79:113–125

    Article  Google Scholar 

  27. Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Carbohydr Polym 83:452–461

    Article  Google Scholar 

  28. Waranyoupalina R, Wongnawa S, Wongnawa M, Pakawatchai C, Panichayupakaranant P, Sherdshoopongse P (2009) Cent Eur J Chem 7:388–394

    Article  Google Scholar 

  29. Chen X, Liu L, Yu PY, Mao SS (2011) Science 331:746–750

    Article  Google Scholar 

  30. Xiao S, Zhao L, Leng X, Lang X, Lian J (2014) Appl Surf Sci 299:97–104

    Article  Google Scholar 

  31. Thapa R, Maiti S, Rana TH, Maiti UN, Chattopadhyay KK (2012) J Mol Catal A 363–364:223–229

    Article  Google Scholar 

  32. Bueno-Ferrer C, Parres-Esclapez S, Lozano-Castelló D, Bueno-López A (2010) J. Rare Earth 28:647–653

    Article  Google Scholar 

  33. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng Y-H (2006) Appl Catal B 68:1–11

    Article  Google Scholar 

  34. Kadam AN, Dhabbe RS, Kokate MR, Gaikwad YB, Garadkar KM (2014) Spectrochim Acta A 133:669–676

    Article  Google Scholar 

  35. Kumar SSD, Mahesh A, Mahadevan S, Mandal AB (2014) Biochim Biophys Acta 1840:1913–1922

    Article  Google Scholar 

  36. Hariharan R, Senthilkumar S, Suganthi A, Rajarajan M (2012) Mater Res Bull 47:3090–3099

    Article  Google Scholar 

  37. Huang PJ, Chang H, Yeh CT, Tsai CW (1997) Thermochim Acta 297:85–92

    Article  Google Scholar 

  38. Kanna M, Wongnawa S, Buddee S, Dilokkhunakul K, Pinpithak P (2010) J Sol-Gel Sci Technol 53:162–170

    Article  Google Scholar 

  39. Halme J, Saarinen J, Lund P (2006) Sol Energy Mater Sol Cells 90:887–899

    Article  Google Scholar 

  40. Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) J Photochem Photobiol A 134:139–142

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Center of Excellent for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, and the Graduate School, Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumpun Wongnawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buddee, S., Wongnawa, S. Removal of dyes by photocatalytically active curcumin-sensitized amorphous TiO2 under visible light irradiation. J Sol-Gel Sci Technol 75, 152–163 (2015). https://doi.org/10.1007/s10971-015-3685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3685-5

Keywords

Navigation