Skip to main content
Log in

One-step synthesis of carbon-coated Li4Ti4.95Nd0.05O12 by modified citric acid sol–gel method for lithium-ion battery

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The effect of Nd doping and one-step carbon coating in Li4Ti4.95Nd0.05O12/C composite materials on the structure and electrochemical performance by modified citric acid sol–gel method was investigated. The obtained samples were characterized by X-ray diffraction, thermogravimetry and transmission electron microscopy. The specific capacities of the Li4Ti4.95Nd0.05O12/C composite at discharge rates of 0.5, 1, 2, 5, 10, 20 and 40 C are 176, 158, 147, 128, 110, 89 and 65 mAh g−1, respectively, which is larger than those of Li4Ti5O12 and Li4Ti4.95Nd0.05O12 materials at high rates. Li4Ti4.95Nd0.05O12/C also shows excellent cycling performance at high rates after 1000 cycles, which is attributed to its smaller polarization resistance and larger lithium-ion diffusion coefficient than Li4Ti4.95Nd0.05O12 material. The further electrochemical performance was also investigated using electrochemical impedance spectroscopy and cyclic voltammetry.

Graphical Abstract

Carbon-coated Li4Ti4.95Nd0.05O12 could be easily synthesized by the modified citric acid sol–gel method in one step. The Li4Ti4.95Nd0.05O12/C composite exhibited good rate capability and high Li-ion diffusion coefficient. The good performance may partially be derived from the symbiotic impurities such as Li2TiO3 and Li0.5Nd0.5TiO3, which is facile for Li+ diffusion and electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  2. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  Google Scholar 

  3. Matsui E, Abe Y, Senna M, Guerfi A, Zaghib K (2008) J Am Ceram Soc 91:1522–1527

    Article  Google Scholar 

  4. Zhao L, Hu Y, Li H, Wang Z, Chen L (2011) Adv Mater 23:1385–1388

    Article  Google Scholar 

  5. Inada R, Shibukawa K, Masada C, Nakanishi Y, Sakurai Y (2014) J Power Sources 253:181–186

    Article  Google Scholar 

  6. Kalbác M, Zukalová M, Kavan L (2003) J Solid State Electr 8:2–6

    Article  Google Scholar 

  7. Borghols WJH, Wagemaker M, Lafont U, Kelder EM, Mulder FM (2009) J Am Chem Soc 131:17786–17792

    Article  Google Scholar 

  8. Zhang N, Liu Z, Yang T, Liao C, Wang Z, Sun K (2011) Electrochem Commun 13:654–656

    Article  Google Scholar 

  9. Jung H, Kim J, Scrosati B, Sun Y (2011) J Power Sources 196:7763–7766

    Article  Google Scholar 

  10. Sivashanmugam A, Gopukumar S, Thirunakaran R, Nithya C, Prema S (2011) Mater Res Bull 46:492–500

    Article  Google Scholar 

  11. Huang S, Wen Z, Zhu X, Yang X (2005) J Electrochem Soc 152:A1301–A1305

    Article  Google Scholar 

  12. Yi TF, Yang SY, Li XY, Yao JH, Zhu YR, Zhu RS (2014) J Power Sources 246:505–511

    Article  Google Scholar 

  13. Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahalan AJ, Goacher T, Thackeray MM (2001) J Electrochem Soc 148:A102–A104

    Article  Google Scholar 

  14. Huang S, Wen Z, Gu Z, Zhu X (2005) Electrochim Acta 50:4057–4062

    Article  Google Scholar 

  15. Sun YK, Jung DJ, Lee YS, Nahm KS (2004) J Power Sources 125:242–245

    Article  Google Scholar 

  16. Zhang YY, Zhang CM, Lin Y, Xiong DB, Wang D, Wu XY, He DN (2014) J Power Sources 250:50–57

    Article  Google Scholar 

  17. Li X, Qu M, Yu Z (2009) J Alloys Compd 487:L12–L17

    Article  Google Scholar 

  18. Li H, Shen L, Zhang X, Nie P, Chen L, Xu K (2012) J Electrochem Soc 159:A426–A430

    Article  Google Scholar 

  19. Zhang XL, Hu GR, Peng ZD (2011) J Inorg Mater 26:443–448

    Article  Google Scholar 

  20. Zhang CM, Zhang YY, Wang J, Wang D, He DN, Xia YY (2013) J Power Sources 236:118–125

    Article  Google Scholar 

  21. Zhang CM, Zheng Y, Ran R, Shao ZP, Jin WQ, Xu NP, Ahn J (2008) J Power Sources 179:640–648

    Article  Google Scholar 

  22. Shao ZP, Zhang CM, Wang W, Su C, Zhou W, Zhu ZH, Park HJ, Kwak C (2011) Angew Chem Int Ed 50:1792–1797

    Article  Google Scholar 

  23. Wang GJ, Gao J, Fu LJ, Zhao NH, Wu YP, Takamura T (2007) J Power Sources 174:1109–1112

    Article  Google Scholar 

  24. Lu J, Peng Q, Wang WY, Nan CY, Li LH, Li YD (2013) J Am Chem Soc 135:1649–1652

    Article  Google Scholar 

  25. Vijayakumar M, Kerisit S, Yang ZG, Graff GL, Liu J, Sears JA, Burton SD, Rosso KM, Hu JZ (2009) J Phys Chem C 113:20108–20116

    Article  Google Scholar 

  26. Wang D, Zhang CM, Zhang YY, Wang J, He DN (2013) Ceram Int 39:5145–5149

    Article  Google Scholar 

  27. Ho C, Raistrick ID, Huggins RA (1980) J Electrochem Soc 127:343–350

    Article  Google Scholar 

  28. Li B, Han C, He YB, Yang C, Du H, Yang QH, Kang F (2012) Energy Environ Sci 5:9595–9602

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by “the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (No. 2014ZDPY17).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenyang Xia or Chunming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Nian, C., Huang, Z. et al. One-step synthesis of carbon-coated Li4Ti4.95Nd0.05O12 by modified citric acid sol–gel method for lithium-ion battery. J Sol-Gel Sci Technol 75, 38–44 (2015). https://doi.org/10.1007/s10971-015-3672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3672-x

Keywords

Navigation