Skip to main content
Log in

Topotactic reductive fluorination of strontium cobalt oxide epitaxial thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Since the discovery of oxyfluoride cuprate superconductors, many efforts have been made to search for new transition-metal oxyfluoride compounds. Recently, the topotactic fluorination reaction using polyvinylidene fluoride (PVDF) has gained attention because of the low-temperature synthesis of oxyfluorides. In this study, we report the fabrication of SrCoO x F y epitaxial thin films via topotactic fluorination of SrCoO2.5 precursor films with PVDF. X-ray diffraction analysis showed that the SrCoO x F y film, with an anion-vacant perovskite structure, was obtained by fluorination at 150 °C and that the in-plane lattice constant was completely dependent on the substrate. Energy dispersive X-ray spectrometry revealed that the chemical composition of the fluorinated film was SrCoO1.9±0.4F0.5±0.1 and X-ray photoemission spectroscopy showed that the Co ions had a mixed valence state of 2+ and 3+. This valence state was smaller than that in the SrCoO2.5 precursor film, indicating that PVDF acted as a reductive fluorinating agent for the SrCoO2.5 film. Moreover, the SrCoO1.9±0.4F0.5±0.1 film did not exhibit ferromagnetism even at 10 K, suggesting the presence of an antiferromagnetic interaction between the Co ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ai-Mamouri M, Edwards PP, Greaves C, Slaski M (1994) Nature 369:382–384

    Article  Google Scholar 

  2. Sullivan E, Greaves C (2012) Mater Res Bull 47:2541–2546

    Article  Google Scholar 

  3. Shinawi HE, Marco JF, Berry FJ, Greaves C (2010) J Mater Chem 20:3253–3259

    Article  Google Scholar 

  4. Mentré O, Kabbour H, Ehora G, Tricot G, Daviero-Minaud S, Whangbo MH (2010) J Am Chem Soc 132:4865–4875

    Article  Google Scholar 

  5. Ehora G, Renard C, Deviero-Minaud S, Mentré O (2007) Chem Mater 19:2924–2926

    Article  Google Scholar 

  6. Tsujimoto Y, Li JJ, Yamaura K, Matsushita Y, Katsuya Y, Tanaka M, Shirako Y, Akaogi M, Takayama-Muramachi E (2011) Chem Commun 47:3263–3265

    Article  Google Scholar 

  7. Tsujimoto Y, Sathish CI, Hong KP, Oka K, Azuma M, Guo Y, Matsushita Y, Yamaura K, Takayama-Muromachi E (2012) Inorg Chem 51:4802–4809

    Article  Google Scholar 

  8. Luo K, Tran TT, Halasyamani PS, Hayward MA (2013) Inorg Chem 52:13762–13769

    Article  Google Scholar 

  9. Itoh M, Natori I, Kubota S, Motoya K (1994) J Phys Soc Jpn 63:1486–1493

    Article  Google Scholar 

  10. Fuchs D, Schweiss P, Adelmann P, Schwarz T, Schneider R (2005) Phys Rev B 72:014466

    Article  Google Scholar 

  11. Slater PR (2002) J Fluorine Chem 117:43–45

    Article  Google Scholar 

  12. Kobayashi Y, Tian M, Eguchi M, Mallouk TE (2009) J Am Chem Soc 131:9849–9855

    Article  Google Scholar 

  13. Berry FJ, Heap R, Helgason Ö, Moore EA, Shim S, Slater PR, Thomas MF (2008) J Phys: Condens Matter 20:215207

    Google Scholar 

  14. Katayama T, Chikamatsu A, Hirose Y, Takagi R, Kamisaka H, Fukumura T, Hasegawa T (2014) J Mater Chem C 2:5350–5356

  15. Moon EJ, Xie Y, Laird ED, Keavney DJ, Li CY, May SJ (2014) J Am Chem Soc 136:2224–2227

    Article  Google Scholar 

  16. Jeen H, Choi WS, Biegalski MD, Folkman CM, Tung I, Fong DD, Freeland JW, Shin D, Ohta H, Chisholm MF, Lee HN (2013) Nat Mater 12:1057–1063

    Article  Google Scholar 

  17. Brown ID, Altermatt D (1985) Acta Cryst B41:244–247

    Article  Google Scholar 

  18. Chainani A, Mathew M, Sarma DD (1992) Phys Rev B 46:9976

    Article  Google Scholar 

  19. Munakata F, Takahashi H, Akimune Y (1997) Phys Rev B 56:979

    Article  Google Scholar 

  20. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257:2717–2730

    Article  Google Scholar 

  21. Shanon RD (1976) Acta Cryst A 32:751–767

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Kimikazu Sasa, Mr. Satoshi Ishii, Dr. Hiroshi Naramoto, and Dr. Daiichiro Sekiba of the University of Tsukuba, and Prof. Katsuyuki Fukutani of the University of Tokyo for their assistance in the NRA measurements. This work was partially supported by Nippon Sheet Glass Foundation for Materials Science and Engineering. EDS measurements were conducted in the Research Hub for Advanced Nano Characterization, at the University of Tokyo, and supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Chikamatsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katayama, T., Chikamatsu, A., Hirose, Y. et al. Topotactic reductive fluorination of strontium cobalt oxide epitaxial thin films. J Sol-Gel Sci Technol 73, 527–530 (2015). https://doi.org/10.1007/s10971-014-3499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3499-x

Keywords

Navigation