Skip to main content
Log in

Visible light assisted photocatalytic degradation of organic dyes on TiO2–CNT nanocomposites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) uniformly decorated with nano-anatase TiO2 particles corresponding to different TiO2–CNT weight ratios (up to 90 % TiO2:10 % CNT) were prepared by employing sol–gel process. The nanocomposites were characterized by X-ray diffraction, IR, Raman, Scanning electron microscopy, Transmission electron microscopy, Photoluminescence, BET surface area and diffuse reflectance measurements. The composites show visible light assisted photocatalytic property, for example, the 90 % TiO2–10 % CNT composite completely degrades Indigo Carmine dye within 1 h of exposure to visible light. Similarly, Orange G and Congo Red dyes were decomposed within 2 h under visible light irradiation. The excellent visible light photocatalytic property of the composite is attributed to the synergetic effect of photoexcitation and photosensitization. This is due to the special nanoarchitecture wherein TiO2 nanoparticles are anchored to CNT surface that provides high specific interfacial area for photon absorption and electron trapping.

Graphical abstract

Visible light assisted degradation profile of Indigo Carmine in the presence of TiO2–CNT nanocomposite and TEM image of the TiO2–CNT nanocomposite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rauf MA, Ashraf SS (2009) Chem Eng J 151:10

    Article  Google Scholar 

  2. Pan JH, Dou H, Xiong Z, Xu C, Ma J, Zhao XS (2010) J Mater Chem 20:4512

    Article  Google Scholar 

  3. Hoffmann MR, Martin ST, Choi W, Bahnermann DW (1995) Chem Rev 95:69

    Article  Google Scholar 

  4. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Nature 452:301

    Article  Google Scholar 

  5. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735

    Article  Google Scholar 

  6. Zhang D, Li G, Yu JC (2010) J Mater Chem 20:4529

    Article  Google Scholar 

  7. Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) J Photochem Photobiol C Photochem Rev 9:171

    Article  Google Scholar 

  8. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) Appl Catal B 125:331

    Article  Google Scholar 

  9. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515

    Article  Google Scholar 

  10. Mills A, Hill G, Crow M, Hodgen S (2005) J Appl Electrochem 35:641

    Article  Google Scholar 

  11. Yates J (1995) Chem Rev 95:735

    Article  Google Scholar 

  12. Liu G, Wang L, Yang HG, Cheng HM, Lu GQ (2010) J Mater Chem 20:831

    Article  Google Scholar 

  13. Akpan UG, Hameed BH (2009) J Hazard Mater 170:520

    Article  Google Scholar 

  14. Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Appl Catal A 325:1

    Article  Google Scholar 

  15. Zhu J, Zach M (2009) Curr Opin Colloid Interface Sci 14:260

    Article  Google Scholar 

  16. Asahi R, Taga Y, Mannstadt W, Freeman AJ (2000) Phys Rev B 61:7459

    Article  Google Scholar 

  17. Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Appl Catal B 48:83

    Article  Google Scholar 

  18. Irie H, Watnabe Y, Hashimoto K (2003) Chem Lett 32:772

    Article  Google Scholar 

  19. Choi W (2006) Catal Surv Asia 10:16

    Article  Google Scholar 

  20. Asahi R, Morikawa T, Ohwakai T, Aloki K, Tagu Y (2001) Science 293:269

    Article  Google Scholar 

  21. Sakthivel S, Kisch H (2003) Angew Chem Int Ed 42:4908

    Article  Google Scholar 

  22. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243

    Article  Google Scholar 

  23. Nagaveni K, Hegde MS, Madras G (2004) J Phys Chem B 108:20204

    Article  Google Scholar 

  24. Murakami N, Chiyoya T, Tsubota T, Ohno T (2008) Appl Catal A 348:148

    Article  Google Scholar 

  25. Dvoranova D, Brezova V, Mazur M, Malati MA (2002) Appl Catal B 37:91

    Article  Google Scholar 

  26. Marci G, Augugliro V, López-Munóz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM (2001) J Phys Chem B 105:1026

    Article  Google Scholar 

  27. Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) Catal Today 122:62

    Article  Google Scholar 

  28. Jun Y, Park JH, Kang MG (2012) Chem Commun 48:6456

    Article  Google Scholar 

  29. Chen X, Mao SS (2007) Chem Rev 107:2891

    Article  Google Scholar 

  30. Long Y, Lu Y, Huang Y, Peng Y, Lu Y, Kang SZ, Mu J (2009) J Phys Chem C 113:13899

    Article  Google Scholar 

  31. An A, Chen J, Nie X, Li G, Zhang H, Liu X, Zhao H (2012) Appl Mater Interfaces 4:5988

    Article  Google Scholar 

  32. Wang H, Dong S, Chang Y, Faria JL (2012) J Hazard Mater 230:235

    Google Scholar 

  33. Lee WJ, Lee JM, Kochuveedu ST, Han TH, Jeong HY, Park M, Yun JM, Kwon J, No K, Kim DH, Kim SO (2012) ACS Nano 6:935

    Article  Google Scholar 

  34. Rajasekar K, Thennarasu S, Rajesh R, Abirami R, Ameen KB, Ramasubbu A (2013) Solid State Sci 26:45

    Article  Google Scholar 

  35. Zhang K, Zhang FJ, Chen ML, Oh WC (2011) Ultrason Sonochem 18:765

    Article  Google Scholar 

  36. Liu S, Sun H, Liu S, Wang S (2013) Chem Eng J 214:298

    Article  Google Scholar 

  37. Torres SM, Pastrana-Martinez LM, Figueiredo JL, Fari JL (2013) Appl Surf Sci 275:361

    Article  Google Scholar 

  38. Leary R, Westwood A (2011) Carbon 49:741

    Article  Google Scholar 

  39. Woan K, Pyrgiotakis G, Sigmund W (2009) Adv Mater 21:2233

    Article  Google Scholar 

  40. Wang WD, Serp P, Kalck P, Faria JL (2005) J Mol Catal A Chem 235:194

    Article  Google Scholar 

  41. Wang W, Serp P, Kalck P, Faria JL (2005) Appl Catal B 56:305

    Article  Google Scholar 

  42. Dong F, Guo S, Wang H, Li X, Wu Z (2011) J Phys Chem C 115:13285

    Article  Google Scholar 

  43. Zhu R, Cong S, Tian Y, Li H, Chen M, Huang Y, Zhao Z, Li Q (2013) Chem Commun 49:5787

    Article  Google Scholar 

  44. Ashkarran AA, Fakharib M, Mahmoudi M (2013) RSC Adv 3:18529

    Article  Google Scholar 

  45. Osorio AG, Silveira ICL, Bueno VL, Bergmann CP (2008) Appl Surf Sci 255:2485

    Article  Google Scholar 

  46. Ramesha K, Prakash AS, Sathiya M, Madras G, Shukla AK (2011) Bull Mater Sci 34:271

    Article  Google Scholar 

  47. Yu J, Ma T, Liu S (2011) Phys Chem Chem Phys 13:3491

    Article  Google Scholar 

  48. Li X, Niu J, Zhang J, Li H, Liu Z (2003) J Phys Chem B 107:2453

    Article  Google Scholar 

  49. Yang YD, Qu LT, Dai LM, Kang TS, Durstock M (2007) Adv Mater 19:1239

    Article  Google Scholar 

  50. Yu Y, Yu JC, Yu JG, Kwok YC, Che YK, Zhao JC, Ding L, Ge WK, Wong PK (2005) Appl Catal A 289:186

    Article  Google Scholar 

  51. Liu B, Zeng HC (2008) Chem Mater 20:2711

    Article  Google Scholar 

  52. Li J, Tang S, Lu L, Zeng HC (2007) J Am Chem Soc 129:9401

    Article  Google Scholar 

  53. Kruk M, Jaroniec M (2001) Chem Mater 13:3169

    Article  Google Scholar 

  54. Xiang Q, Yu T, Wong PK (2011) J Colloid Interface Sci 357:163

    Article  Google Scholar 

  55. Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646

    Article  Google Scholar 

  56. Ramesha K, Prakash AS, Sathiya M, Madras G, Shukla AK (2011) Mater Sci Eng B 176:141

    Article  Google Scholar 

  57. Ramachandran R, Sathiya M, Ramesha K, Prakash AS, Madras G, Shukla AK (2011) J Chem Sci 123:517

    Article  Google Scholar 

  58. Vinu R, Akki SU, Madras G (2010) J Hazard Mater 176:765

    Article  Google Scholar 

  59. Vautier M, Guillard C, Herrmann JM (2001) J Catal 201:46

    Article  Google Scholar 

  60. Oh WC, Chen ML (2008) Bull Korean Chem Soc 29:159

    Article  Google Scholar 

  61. Silva CG, Faria JL (2010) Appl Catal B 101:81

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Council of Scientific and Industrial Research (CSIR), India for supporting this work under the TAPSUN programme. Ms. K. Hemalatha thanks CSIR, for granting Senior Research Fellowship. Mr. Pedda Masthaniah Ette thanks CSIR for providing financial support under TAPSUN Project. The authors also thank Dr. N. Lakshminarasimhan, for his help in PL and BET measurements. N2 adsorption/desorption isotherm were collected using the facility at CSIR-Innovation Complex, Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramesha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, K., Ette, P.M., Madras, G. et al. Visible light assisted photocatalytic degradation of organic dyes on TiO2–CNT nanocomposites. J Sol-Gel Sci Technol 73, 72–82 (2015). https://doi.org/10.1007/s10971-014-3496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3496-0

Keywords

Navigation