Skip to main content
Log in

Synthesis and optical properties of BaTiO3:Eu3+@SiO2 glass ceramic nano particles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

BaTiO3:(5 %)Eu3+ nanoparticles and BaTiO3:(5 %)Eu3+@SiO2 composites were synthesized by the solvothermal method. The effects on the structure, morphology and luminescent properties were studied using samples with different molar ratios of BaTiO3:(5 %)Eu3+@SiO2: 60:40, 50:50, 40:60, 30:70, 20:80, 10:90, 08:92, 6.5:93.5, 05:95, and 1.5:98.5. When the amount of silica in the composites was increased, the orange emission of Eu3+ increased, too; this was observed by exciting the charge transfer band centered at 283 nm. Furthermore, an increase in the intensity of the emission was obtained under excitation at 394 nm as a consequence of the improvement in the crystallinity of the samples. The presence of silica and the degree of crystallinity of the samples were determined through the Fourier transform infrared spectra and X-ray diffraction patterns. All of the results suggest that our ceramic material could be a good candidate for biomedical applications such as biolabeling, since the luminescence of BaTiO3:(5 %)Eu3+@SiO2 composites have an emission intensity higher than that of nanoparticles composed solely of BaTiO3:Eu3+. This work demonstrates that BaTiO3:Eu3+@SiO2 composites have an emission intensity higher than that of nanoparticles composed solely of BaTiO3:Eu3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. García Solé J, Bausá LE, Jaque D (2005) An introduction to the optical spectroscopy of inorganic solids. Wiley, USA

    Book  Google Scholar 

  2. Wybourne BG, Smentek L (2007) Optical spectroscopy of lanthanides. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Hu Z, Wang G, Huang Z, Meng X, Chu J (2003) Investigations on the infrared optical properties of BaTiO3 ferroelectric thin films by spectroscopic ellipsometry. Semicond Sci Technol 18:449–453

    Article  Google Scholar 

  4. Mahata MK, Kumar K, Rai VK (2014) Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method. Spectrochim Acta, Part A 124:285–291

    Article  Google Scholar 

  5. Liu Y, Pisarski WA, Zeng S, Xu C, Yang Q (2009) Tri-color upconversion luminescence of rare earth doped BaTiO3 nanocrystals and lowered color separation. Opt Express 17(11):9089–9098

    Article  Google Scholar 

  6. Li J, Kuwabara M (2003) Preparation and luminescent properties of Eu-doped BaTiO3 thin films by sol–gel process. Sci Tech Adv Mater 4:143–148

    Article  Google Scholar 

  7. Rabuffetti FA, Culver SP, Lee JS, Brutchey RL (2014) Local structural investigation of Eu3+-doped BaTiO3 nanocrystals. Nanoscale 6:2909–2914

    Article  Google Scholar 

  8. Patel DK, Vishwanadh B, Sudarsan V, Vatsa RK, Kulshreshtha SK (2011) Hexagonal BaTiO3:Eu3+ nanoparticles: a kinetically stable phase prepared at low temperatures. J Am Ceram Soc 94(2):482–487

    Article  Google Scholar 

  9. Rodrıguez-Garcia CE, Perea-Lopez N, Hirata GA, DenBaars SP (2008) Red-emitting SrIn2O4:Eu3+ phosphor powders for applications in solid state white lamps. J Phys D 41:092005

    Article  Google Scholar 

  10. Jadhav AP, Pawar AU, Palc U, Kang YS (2014) Red emitting Y2O3:Eu3+ nanophosphors with > 80% down conversion efficiency. J Mater Chem C 2:496–500

    Article  Google Scholar 

  11. Busca G, Buscaglia V, Leoni M, Nannit P (1994) Solid-state and surface spectroscopic characterization of BaTiO3 fine powders. Chem Mater 6(7):955–961

    Article  Google Scholar 

  12. Duran P, Capel F, Gutierrez D, Tartaj J, Banares MA, Moure C (2001) Metal citrate polymerized complex thermal decomposition leading to the synthesis of BaTiO3: effects of the precursor structure on the BaTiO3 mechanism. J Mater Chem 11(7):1828–1836

    Article  Google Scholar 

  13. Ma Y, Vileno E, Suib SL, Dutta PK (1997) Synthesis of Tetragonal BaTiO3 by Microwave heating and conventional heating. Chem Mater 9(12):3023–3031

    Article  Google Scholar 

  14. Zhu X, Zhu J, Zhou S, Liu Z, Ming N, Dietrich H (2005) BaTiO3 nanocrystals: hydrothermal synthesis and structural characterization. J Cryst Growth 283(3–4):553–562

    Article  Google Scholar 

  15. Wada S, Nozawa A, Ohno M, Kakemoto H, Tsurumi T, Kameshima Y, Ohba Y (2009) Preparation of barium titanate nanocube particles by solvothermal method and their characterization. J Mater Sci 44(19):5161–5166

    Article  Google Scholar 

  16. García-Hernández M, Chadeyron G, Boyer D, García-Murillo A, Carrillo-Romo F, Mahiou R (2013) Hydrothermal synthesis and characterization of europiom-doped barium titanate nanocrystallites. Nano-Micro Lett 5(1):57–65

    Article  Google Scholar 

  17. Pang T, Cao W, Xing M, Feng W, Xu S, Luo X (2011) Preparation and upconversion luminescence of monodisperse Y2O2S:Yb/Ho-silica/aminosilane core-shell nanoparticles. J Rare Earth 28(4):509–512

    Article  Google Scholar 

  18. Boulos M, Guillermet-Fristch S, Matheieu F, Durant B, Lebey T, Bley V (2005) Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics. Solid State Ion 176(13–14):1301–1309

    Article  Google Scholar 

  19. Klein LC (1985) Sol–gel processing of silicates. Annu Rev Mater Sci 15:227–248

    Article  Google Scholar 

  20. Du H, Wohlrab S, Weib M, Kaskel S (2007) Preparation of BaTiO3 nanocrystals using a two-phase solvothermal method. J Mater Chem 17:4605–4610

    Article  Google Scholar 

  21. Last JT (1957) Infrared-absorption studies on barium titanate and related materials. Phys Rev 105(6):1740–1750

    Article  Google Scholar 

  22. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  23. Amami J, Hreniak D, Guyot Y, Pazik R, Strek W, Goutaudier C, Boulon G (2007) New optical tools used for characterization of phase transitions in nonlinear nano-crystals. Example of Yb3+-doped BaTiO3. J Phys Condens Matter 19(9):1–14

    Article  Google Scholar 

  24. Matsui K, Noguchi T, Islam NM, Hakuta Y, Hayashi H (2008) Rapid synthesis of BaTiO3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system. J Cryst Growth 310(10):2584–2589

    Article  Google Scholar 

  25. Dutta DP, Ballal A, Nuwad J, Tyagi AK (2014) Optical properties of sonochemically synthesized rare earth ions doped BaTiO3 nanophosphors: probable candidate for white light emission. J Lumin 148:230–237

    Article  Google Scholar 

  26. Liu T, Wanga Y, Qin H, Bai X, Dong B, Sun L, Song H (2011) Gd2O3:Eu3+@mesoporous SiO2 bifunctional core–shell composites: fluorescence label and drug release. Mater Res Bull 46:2296–2303

    Article  Google Scholar 

  27. Liu G, Hong G, Sun D (2004) Synthesis and characterization of SiO2/Gd2O3:Eu core–shell luminescent materials. J Colloid Interface Sci 278:133–138

    Article  Google Scholar 

  28. Hreniak D, Strek W, Amami J, Guyot Y, Boulon G, Goutaudier C, Pazik R (2004) The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallites prepared by the sol–gel method. J Alloys Compd 380:348–351

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the IPN through projects SIP-20140031, SIP-20140032. J. Reyes Miranda acknowledges the Ph. D. scholarship from CONACYT. The authors thank the experimental support of CNMN-IPN for structural studies. The authors thank PhD Haggeo Desirena Enriquez for his technical support in luminescence studies. The authors also would like to thank Henry Jankiewicz for the editing work that he did for this paper. The authors would also like to thank M. García Murillo for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. García Murillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes Miranda, J., García Murillo, A., de J. Carrillo Romo, F. et al. Synthesis and optical properties of BaTiO3:Eu3+@SiO2 glass ceramic nano particles. J Sol-Gel Sci Technol 72, 435–442 (2014). https://doi.org/10.1007/s10971-014-3480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3480-8

Keywords

Navigation