Skip to main content

Advertisement

Log in

Synthesis of nanosized carbonated apatite by a modified Pechini method: hydroxyapatite nucleation from a polymeric matrix

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pechini method is a materials synthesis method based on the preparation of a polymeric matrix. The advantage of this method is the ability to obtain materials with different particle sizes depending on the synthesis condition with a homogeneous distribution. In this work, carbonated hydroxyapatite (c-OHAp) nanoparticles were obtained by a modified Pechini method. To obtain the polymeric precursor of the c-OHAp, the polymeric matrix was prepared through a polyesterification reaction between citric acid and ethylene-glycol. Adding calcium hydroxide and ortophosphoric acid in aqueous solutions, raising the temperature up to 140 °C/2 h and keeping constant the pH at 8. The polymeric matrix was calcinated at different ranges of temperature from 200 to 600 °C in order to obtain the c-OHAp powder. The results show the presence of c-OHAp a as unique phase. The thermal analysis indicates that the c-OHAp phase was obtained at 600 °C. The particle size of the obtained material was <50 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amin Alavia M, Morsalia A (2010) Ultrasonic-assisted synthesis of Ca(OH)2 and CaO nanostructures. J Exp Nanosci 5(2):93–105

    Article  Google Scholar 

  2. Rama Krishna DS, Siddharthan A, Seshadri SK, Sampath Kumar TS (2007) A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J Mater Sci Mater Med 18:1735–1743

    Article  Google Scholar 

  3. Silva CC, Pinheiro AG, Miranda MAR, Góes JC, Sombra ASB (2003) Structural, properties of hydroxyapatite obtained by mechanosynthesis. Solid State Sci 5:553–558

    Article  Google Scholar 

  4. Li C, Meng F (2008) Nano-crystallinite hydroxyapatite synthesized by neutralization with the assist of citric acid. Mater Lett 62:932–934

    Article  Google Scholar 

  5. Gross KA, Rodríguez-Lorenzo LM (2004) Biodegradable composites scaffolds with an interconnected spherical pore network for bone tissue engineering. Biomaterials 25(20):4955–4962

    Article  Google Scholar 

  6. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J.Tiss. Eng Regen Med

  7. Mahabole MP et al (2005) Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull Mater Sci 28(6):535–545

    Article  Google Scholar 

  8. Martins MA, Santos C, Margarida Almeida M, Costa MEV (2008) Hydroxyapatite micro and nanoparticles: nucleation and growth mechanisms in the presence of citrate species. J Colloid Interface Sci 318:210–216

    Article  Google Scholar 

  9. Fernández-Montes Moraleda B, San Román J, Rodríguez-Lorenzo LM (2013) Influence of surface features of hydroxyapatite on the adsorption of proteins relevant to bone regeneration. J Biomed Mater Res 8:2332–2339. doi:10.10002/jbm.a.34528101

    Article  Google Scholar 

  10. De Campos M, Muller FA, Bressiani AHA, Bressiani JC, Greil P (2007) Sonochemical synthesis of calcium phosphate powders. J Mater Sci Mater Med 18:669–675

    Article  Google Scholar 

  11. Sadat-Shojai M (2009) Preparation of hydroxyapatite nanoparticles: comparison between hydrothermal and solvo-treatment processes and colloidal stability of produced nanoparticles in a dilute experimental adhesive. J Iran Chem Soc 6(2):386–392

    Article  Google Scholar 

  12. Santos MH et al (2004) Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater Res 7(4):625–630

    Article  Google Scholar 

  13. Jaworski R, Pierlot Ch, Pawlowski L, Bigan M, Martel M (2009) Design of the synthesis of fine HA powder for suspension plasma spraying. Surf Coat Technol 203:2092–2097

    Article  Google Scholar 

  14. Cengiz B, Gokce Y, Yildiz N, Aktas Z, Calimli A (2008) Synthesis and characterization of hydroxyapatite nanoparticles. Colloids Surf A: PhysicoChem Eng Asp 322:29–33

    Article  Google Scholar 

  15. Bigi A, Boanini E, Rubini K (2004) Hydroxyapatite gels and nanocrystals prepared through a sol–gel process. J Solid State Chem 177:3092–3098

    Article  Google Scholar 

  16. Bezzi G, Celotti G, Landib E, La Torretta TMG, Sopyan I, Tampieri A (2003) A novel sol–gel technique for hydroxyapatite preparation. Mater Chem Phys 78:816–824

    Article  Google Scholar 

  17. Chu CL, Lin PH, Dong YS, Guo DY (2002) Influences of citric acid as a chelating reagent on the characteristics of nanophase hydroxyapatite powders fabricated by a sol–gel method. J Mater Sci Lett 21:1793–1795

    Article  Google Scholar 

  18. Pechini M P (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, 3,330,697 Patented July 11

  19. Segal D (1997) Chemical synthesis of ceramic materials. J Mater Chem 7(8):1297–1305

    Article  Google Scholar 

  20. Peña J, Vallet-Regí M (2003) Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J Eur Ceram Soc 23:1687–1696

    Article  Google Scholar 

  21. Galceran M, Pujol MC, Aguiló M, Díaz F (2007) Sol–gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). J Sol–Gel Techn 42:78–88

    Google Scholar 

  22. Zhang Y, Li A, Yan Z, Xu G, Liao C, Yan C (2003) (ZrO2)0.85(REO1.5)0.15 (RE = Sc, Y) solid solutions prepared via THREE Pechini-type gel routes: 1-gel formation and calcinations behaviors. J Sci Sci Comm 17:1434–1438

    Google Scholar 

  23. Mosquera A, Varela JA, Rodríguez-Páez JE (2007) Varistores de SnO2 obtenidos por el método de precursor polimérico (Pechini). Rev Acad Colomb Cienc 31(118):89–96

    Google Scholar 

  24. Cho SG, Johnson PF, Condrate RA (1990) Thermal decomposition of (Sr, Ti) organic precursors during the Pechini process. J Mater Sci 25:4738–4744

    Article  Google Scholar 

  25. Tsay J, Fang T (1999) Effects of molar ratio of citric acid to cations and of pH value on the formation and thermal-decomposition behavior of barium titanium citrate. J Am Ceram Soc 82(6):1409–1415

    Article  Google Scholar 

  26. Razpotnik T, Franceti V, Maek J (2006) Preparation of NiO/YSZ powders using a Pechini-type method. MTAEC 40(2):69–72

    Google Scholar 

  27. Lee H, Hong M, Bae S, Lee H, Park E, Kim K (2003) A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes. J Mater Chem 13:2626–2632

    Article  Google Scholar 

  28. Costa ACFM, Vilar MA, Lira HL, Kiminami RHGA, Gama L (2006) Synthesis and characterization of TiO2 nanoparticles. Cerâmica 52:255–259

    Article  Google Scholar 

  29. Farhikhteh S, Maghsoudipour A, Raissi B, Mozaffari B (2009) Synthesis of high specific surface area YSZ (ZrO2–8Y2O3) nanocrystalline powder by modified polymerized complex method. J Sol–Gel Sci Tech 49:60–65

    Article  Google Scholar 

  30. Alessandra F, de Jesus A, Santos da Silva R, Soares Z (2010) Synthesis of Bi4Ge3O12 ceramic scintillators by the polymeric precursos method. J Therm Anal Calorim 100:537–541

    Article  Google Scholar 

  31. Voicu G, Ghitulica CD, Andronescu E (2012) Modified Pechini synthesis of tricalcium aluminate powder. Mater Charact 73:89–95

    Article  Google Scholar 

  32. Xu Z, Li Y, Liu Z, Xiong Z (2001) Low-temperature synthesis of nanocrystalline ZnGa2O4:Tb3+ phosphors via the Pechini method. Mater sci eng 110:302–306

    Article  Google Scholar 

  33. Gutiérrez D, Tartaj J, Durán P, Moure C (2001) Síntesis, sinterización y propiedades eléctricas de soluciones sólidas YNixMn1−xO3 preparadas a partir de Precursores Poliméricos. Bol Soc Esp Cer Vid 40(5):339–343

    Article  Google Scholar 

  34. NIST Chemistry Webook (http://webook.nist.gov/chemistry)

  35. Laberty-Robert Ch, Ansart F, Deloget C, Gaudon M, Rousset A (2001) Powder synthesis of nanocristalline ZrO2-8%y2o3 via a polymerization route. Mater Res Bul 36:2083–2101

    Article  Google Scholar 

  36. Mosquera A, Rodríguez-Páez JE (2008) Obtención de nano-estructuras bi-dimensionales de SnO2 utilizando el método pechini: estudio de la conformación de la resina. Bol Soc Esp Ceram 47(5):278–286

    Article  Google Scholar 

  37. Solís Moré Y, García Carrodeguas R, Davidenko N, Peniche Covas C, Camerón R (2008) Preparación y caracterización de composites de hidroxiapatita deficiente en calcio y quitosana. CENIC Ciencias Químicas 39:17–22

    Google Scholar 

  38. Xiao X-F, Liu R-F, Gao Y-J (2008) Hydrothermal preparation of nanocarbonated hydroxyapatite crystallites. Mater Sci Technol 24(10):1199–1203

    Article  Google Scholar 

  39. Liu WB, Qu SX, Shen R, Jian CX, Li XH, Feng B, Weng J (2006) Influence of pH values on preparation of hydroxyapatite/gelatin composites. J Mater Sci 41:1851–1853

    Article  Google Scholar 

  40. Vargas-Becerril N, Patiño-Carachure C, Tellez-Jurado L, Rodriguez-Lorenzo LM (2013) Synthesis of hybrid compounds apatite–alendronate by reactive milling and effects on the structure and morphology of the apatite phase. Ceram Int 39:3921–3929

    Article  Google Scholar 

  41. Enrique Pérez Alberaez, WALCO S.A. Vol.1.0;27-VII-1997

  42. Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett 61:3978–3983

    Article  Google Scholar 

  43. Ferraz MP, Monteiro FJ, Manuel CM (2004) Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech 2:74–80

    Google Scholar 

  44. Siva Rama Krishna D, Siddharthan A, Seshadri SK, Sampath Kumar TS (2007) A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J Mater Sci Mater Med 18:1735–1743

    Article  Google Scholar 

  45. Fernández-Montes Moraleda B, San Román J, Rodríguez-Lorenzo LM (2013) Influence of surface features of hydroxyapatite on the adsorption of proteins relevant to bone regeneration. J Biomed Mater Res 101A:2332–2339

    Article  Google Scholar 

  46. Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A (2009) Effect of Mg2+, Sr2+ and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 1013:1666–1674

    Article  Google Scholar 

Download references

Acknowledgments

The authors thanks to UNAM-DGAPA for postdoctoral scholarship supporting to NVB during the course of this study. We appreciate the technical support from S. Tehuacanero Núñez, P. Mexia Hernández This study was partially conducted with the financial support granted by DGAPA-UNAM through projects IN106710 and IN213912, by IPN through SIP project 20130452 and by CICYT, Spain through project MAT2010-18155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vargas-Becerril.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Becerril, N., Téllez-Jurado, L., Reyes-Gasga, J. et al. Synthesis of nanosized carbonated apatite by a modified Pechini method: hydroxyapatite nucleation from a polymeric matrix. J Sol-Gel Sci Technol 72, 571–580 (2014). https://doi.org/10.1007/s10971-014-3478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3478-2

Keywords

Navigation