Skip to main content
Log in

TiO2 xerogels prepared by modified sol–gel method with ethylenediamine are photoactive for the 4-nitrophenol photoreduction

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Amorphous and nanocrystalline TiO2 xerogel semiconductors were synthesized by sol–gel using different hydrolysis pH conditions with and without ethylenediamine as structural modifier. Blue-shift of the optical-electronic properties was observed for the amorphous TiO2 xerogel samples obtained in an alkaline hydrolysis medium. Different textural properties (specific surface area, N2 adsorption–desorption isotherm and pore size distribution) were promoted by the use of ethylenediamine for the amorphous TiO2 xerogel semiconductors, as well as high photocatalytic activity for the reduction of 4-nitrophenol. These results are discussed as function of the textural properties of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tian G, Fu H, Jing L, Tia C (2009) J Hazard Mater 161:1122–1130

    Article  Google Scholar 

  2. Wang F, Liu Y, Dong W, Shen M, Kang Z (2011) J Phys Chem C 115:14635–14640

    Article  Google Scholar 

  3. Sun Q, Xu Y (2010) J Phys Chem C 114:18911–18918

    Article  Google Scholar 

  4. Hua A, Liang R, Zhang X, Kurdi S, Luong D, Huang H, Peng P, Marzbanra E, Oakes KD, Zhou Y, Servos MR (2013) J Photochem Photobiol A Chem 256:7–15

    Article  Google Scholar 

  5. Tian G, Fu H, Jing L, Xin B, Pan K (2008) J Phys Chem C 112:3083–3089

    Article  Google Scholar 

  6. Lee M, Yun HJ, Yu S, Yi J (2014) Catal Commun 43:11–15

    Article  Google Scholar 

  7. Mitsionis AI, Vaimakis TC (2013) J Therm Anal Calorim 112:621–628

    Article  Google Scholar 

  8. Zhoua J, Zhao G, Han G, Song B (2013) Ceram Intern 39:8347–8354

    Article  Google Scholar 

  9. Švadlák D, Shánělová S, Málek J, Pérez-Maqued L, Criado JM, Mitsuhashi T (2004) Thermochim Acta 414:137–143

    Article  Google Scholar 

  10. Randorn C, Irvine JTS, Robertson P (2008) Intern J Photoenergy ID 426872:1–6

    Article  Google Scholar 

  11. Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) J Phys Chem C 112:14595–14602

    Article  Google Scholar 

  12. Zou J, Gao J, Xie F (2010) J Alloys Compd 497:420–427

    Article  Google Scholar 

  13. Tao Y, Cao N, Pan J, Sun Y, Jin C, Song Y (2014) J Mater Sci 49:897–904

    Article  Google Scholar 

  14. Hwang KJ, Lee JW, Yoo SJ, Jeong S, Jeong DH, Shime WG, Cho DW (2013) New J Chem 37:1378

    Article  Google Scholar 

  15. Supphasrirongjaroen P, Kongsuebchart W, Panpranot J, Mekasuwandumrong O, Satayaprasert C, Praserthdam P (2008) Ind Eng Chem Res 47:693–697

    Article  Google Scholar 

  16. Carrera-López R, Castillo-Cervantes S (2012) Superficies y Vacío 25(2):82–87

    Google Scholar 

  17. Zuyuan W, Fuxiang Z, Yali Y, Jie C, Qing S, Naijia G (2006) Chinese J Catal 27(12):1091–1095

    Article  Google Scholar 

  18. Xie RC, Shang JK, Wu P (2007) US20070202334

  19. Lam SM, Sin JC, Mohamed AR (2008) Recent Pat Chem Eng 1:209–219

    Article  Google Scholar 

  20. Choi H, Kim YJ, Varma RS, Dionysiou D (2006) Chem Mater 18:5377–5384

    Article  Google Scholar 

  21. Hernández-Gordillo A, Romero AG, Tzompantzi F, Gómez R (2013) Powder Technol 250:97–102

    Article  Google Scholar 

  22. Hernández-Gordillo A, Romero AG, Tzompantzi F, Gómez R (2014) Appl Catal B Environ 144:507–513

    Article  Google Scholar 

  23. Su J, Zou X, Li GD, Jiang YM, Cao Y, Zhao J, Chen JS (2013) Chem Commun 49:8217

    Article  Google Scholar 

  24. Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) J Mater Chem 11:1694–1703

    Article  Google Scholar 

  25. Yu J, Wang G, Cheng B, Zhou M (2007) Appl Catal B Environ 69:171–180

    Article  Google Scholar 

  26. Bowering N, Croston D, Harrison P, Walker GS (2007) Int J Photoenergy ID 90752:1–8

    Article  Google Scholar 

  27. Xie R, Shang JK (2007) J Mater Sci 42:6583–6589

    Article  Google Scholar 

  28. Zhao Y, Qiu X, Burda C (2008) Chem Mater 20:2629–2636

    Article  Google Scholar 

  29. Lee H, Kang M (2013) J Sol–Gel Sci Technol 3221–3224

  30. Jimmy C, Yu J, Zhang L, Ho W (2002) J Photochem Photobiol A Chem 148:263–271

    Article  Google Scholar 

  31. Luan Y, Jing L, Xie M, Shi X, Fan X, Cao Y, Feng Y (2012) Phys Chem Chem Phys 14:1352–1359

    Article  Google Scholar 

  32. Sugimoto T, Zhou X, Muramatsu A, Agafonov AV, Vinogradov AV (2009) J sol–Gel Sci Technol 49:180–185

    Article  Google Scholar 

  33. Hafizah N, Sopyan L (2009) Int J Photoenergy ID 962783:1–8

    Article  Google Scholar 

  34. Yang G, Jiang Z, Shi H, Xiao T, Yan Z (2010) J Mater Chem 20:5301–5309

    Article  Google Scholar 

  35. López R, Gómez R (2012) J Sol–Gel Sci Technol 61:1–7

    Article  Google Scholar 

  36. Valencia S, Marín JM, Restrepo G (2010) Open Mater Sci J 4:9–14

    Google Scholar 

  37. Jiang Z, Kong L, Alenazey F, Qian Y, France L, Xiao T, Edwards P (2013) Nanoscale 5:5396

    Article  Google Scholar 

  38. Sun Q, Xu Y (2010) J Phys Chem C 114:18911–18918

    Article  Google Scholar 

  39. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) J Catal 203:82–86

    Article  Google Scholar 

  40. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Appl Catal B Environ 69:138–144

    Article  Google Scholar 

  41. Leelavathi A, Rao TUB, Pradeep T (2011) Nano Res Lett 6(123):2–9

    Google Scholar 

  42. Bangkedphol S, Keenan HE, Davidson CM, Sakultantimetha A, Sirisaksoontorn W, Songsasen A (2004) J Hazard Mater 184:533–537

    Article  Google Scholar 

Download references

Acknowledgments

This research was made with the support of CONACYT-SEP CB-2010-01 194451 Nanostructure Materials for Photocatalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agileo Hernández-Gordillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipagauta, S., Hernández-Gordillo, A. & Gómez, R. TiO2 xerogels prepared by modified sol–gel method with ethylenediamine are photoactive for the 4-nitrophenol photoreduction. J Sol-Gel Sci Technol 72, 428–434 (2014). https://doi.org/10.1007/s10971-014-3453-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3453-y

Keywords

Navigation