Skip to main content
Log in

A structural investigation of tris(ethyl acetoacetate)aluminium (III)

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aluminium tris(ethyl acetoacetate), Al(C6H9O3)3 has been prepared and characterized by means of 1H and 13C nuclear magnetic resonance spectroscopy, scanning electron microscopy and X-ray powder diffraction (XRPD). It was determined that two stereoisomeric complexes can be distinguished in the solution: meridional and facial. The crystal structure of Al(C6H9O3)3 has been determined from XRPD data. The compound crystallizes in the monoclinic space group P21/n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kurajica S, Mali G, Gazivoda T, Sipusic J, Mandic V (2009) A spectroscopic study of calcium aluminate gels obtained from aluminium sec-butoxide chelated with ethyl acetoacetate in various ratios. J Sol–Gel Sci Technol 50:58–68

    Article  Google Scholar 

  2. Nass R, Schmidt H (1990) Synthesis of an alumina coating from chelated aluminium alkoxides. J Non Cryst Solids 121:329–333

    Article  Google Scholar 

  3. Mehrotra RC (1988) Chemistry of metal β-diketonates. Pure Appl Chem 60:1349–1356

    Article  Google Scholar 

  4. Tadanaga K, Iwami T, Tohge N, Minami T (1994) Precursor structure and hydrolysis-gelation process of Al(O-sec-Bu)3 modified with ethylacetoacetate. J Sol–Gel Sci Technol 3:5–10

    Article  Google Scholar 

  5. Hoebbel D, Reinert T, Schmidt H, Arpac A (1997) On the hydrolytic stability of organic ligands in Al-, Ti- and Zr-alkoxide complexes. J Sol–Gel Sci Technol 10:115–126

    Article  Google Scholar 

  6. Lichtenberger R, Puchberger M, Baumann SO, Schubert U (2009) Modification of aluminum alkoxides with β-ketoesters: new insights into formation, structure and stability. J Sol–Gel Sci Technol 50:130–140

    Article  Google Scholar 

  7. Lichtenberger R, Schubert U (2010) Chemical modification of aluminium alkoxides for sol–gel processing. J Mater Chem 20:9287–9296

    Article  Google Scholar 

  8. Sakka S (2005) Handbook of sol–gel science and technology: processing characterization and applications. 1. Sol–gel processing. Kluwer, New York

    Google Scholar 

  9. Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    Article  Google Scholar 

  10. Sanpo N, Wang J, Berndt CC (2013) Influence of chelating agents on the microstructure and antibacterial property of cobalt ferrite nanopowders. J Aust Ceram Soc 49:84–91

    Google Scholar 

  11. Wang SF, Zhang CF, Sun GA, Chen B, Xiang X, Ding QP, Zu XT (2014) Chelating agents role on phase formation and surface morphology of single orthorhombic YMn2O5 nanorods via modified polyacrylamide gel route. Sci China Chem 57:402–408

    Article  Google Scholar 

  12. Abdullah NA, Osman N, Hasan S, Hassan OH (2012) Celating agents role on thermal characteristics and phase formation of modified cerate–zirconate via sol–gel synthesis route. Int J Electrochem Sci 7:9401–9409

    Google Scholar 

  13. Seyedahmadian M, Houshyarazar S, Amirshaghaghi A (2013) Synthesis and characterization of nanosized of spinel LiMn2O4 via sol–gel and freeze drying methods. Bull Korean Chem Soc 34:622–628

    Article  Google Scholar 

  14. Marquez-Alvarez C, Zilkova N, Perez-Pariente J, Cejka J (2008) Synthesis, characterization and catalytic applications of organized mesoporous aluminas. Catal Rev 50:222–286

    Article  Google Scholar 

  15. Altomare A, Camalli M, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R (2009) EXPO2009: structure solution by powder data in direct and reciprocal space. J Appl Cryst 42:1197–1202

    Article  Google Scholar 

  16. Altomare A, Camalli M, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R (2011) EXPO2011: a new package for powder crystallography. Powder Diffr Suppl 26(S1):S2–S12

    Article  Google Scholar 

  17. Altomare A, Campi G, Cuocci C, Eriksson L, Giacovazzo C, Moliterni A, Rizzi R, Werner PE (2009) Advances in powder diffraction pattern indexing: N-TREOR09. J Appl Cryst 42:768–775

    Article  Google Scholar 

  18. Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  19. Kempster CJE, Lipson H (1972) A rapid method for assessing the number of molecules in the unit cell of an organic crystal. Acta Cryst B 28:3674

    Article  Google Scholar 

  20. Djerdj I, Popović J, Stare J, Ambrožić G, Škapin S, Kozlevčar B, Pajić D, Jagličić Z, Crnjak Orel Z (2012) Nanocrystalline hybrid inorganic-organic one-dimensional chain systems tailored with 2 and 3-phenyl rings monocarboxylic acids. J Mater Chem 22:10255–10265

    Article  Google Scholar 

  21. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J Phys Rev B 54:11169–11186

    Article  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  23. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  24. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621

    Article  Google Scholar 

  25. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  26. Zanello P, de Bianai FF, Glidewell C, Koenig J, Marsh SJ (1998) Isomerism and redox properties of 1-ferrocenyl1,3-butanedionate complexes. Polyhedron 17:1795–1801

    Article  Google Scholar 

  27. von Chrzanowski LS, Lutz M, Spek AL (2006) γ-Tris(2,4-pentanedionato-κ2O,O′)aluminium(III) at 110 K. Acta Cryst E62:m3318–m3320

    Google Scholar 

  28. von Chrzanowski LS, Lutz M, Spek AL (2007) α-Tris(2,4-pentanedionato-κ2O, O′)aluminium(III) at 240, 210, 180, 150 and 110 K: a new δ phase at 110 K. Acta Cryst C63:m129–m134

    Google Scholar 

  29. Brown ID, Wu KK (1976) Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 32:1957–1959

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the Ministry of Science, Education and Sports of Republic of Croatia and University of Zagreb is gratefully acknowledged. We would like to thank Dr. Caterina Chiarella for technical contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kurajica.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary data

Supplementary data

Crystallographic data for the reported Al(Eaa)3 structure have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 961440.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurajica, S., Popović, J., Gazivoda Kraljević, T. et al. A structural investigation of tris(ethyl acetoacetate)aluminium (III). J Sol-Gel Sci Technol 71, 217–223 (2014). https://doi.org/10.1007/s10971-014-3345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3345-1

Keywords

Navigation