Skip to main content
Log in

Hybrid-coatings derived from pyromellitic acid bridged alkoxy-silylalkyl precursors

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

To achieve high temperature stable insulation materials for the electrical insulation of fine copper wires two different bis(alkoxysilylalkyl)pyromellitamide acids 1 and 2 were prepared. These organic–inorganic sol–gel hybrid precursors were obtained via reactions of pyromellitic dianhydride and alkoxysilylalkylamines. The molecular single-source precursors 1 and 2 were comprehensively studied using FT-IR, 1H, 13C and 29Si NMR spectroscopy as well as elemental analyses. Besides, the hydrolysis and condensation processes of the different precursors were examined with solution 29Si NMR spectroscopy. The imidization process was investigated using 13C NMR spectroscopy, FT-IR spectroscopy as well as thermal analysis methods. The different precursors were applied to coat fine copper wires using an industrial coating device. The obtained coatings were cured at temperatures between 380 and 425 °C, and tested regarding thicknesses, number of pinholes, electrical breakdown voltage and elongation. FT-IR spectroscopy was used to determine the chemical structure and scanning electron microscopy to investigate the morphology of the coating materials. The obtained coatings showed very promising mechanical, thermal and electrical properties, i.e. highest breakdown voltage values well above 200 V/µm. They possess high flexibility without cracking and no pinholes or other defects were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. DIN EN (2011) 60317-0-1

  2. Anton A, Lienert KW, Hegemann G (2008) Macromol Mater Eng 293:331–339

    Article  Google Scholar 

  3. Schmidt K, Boockmann G (1697) United States Patent 3950452

  4. Precopio FM, Fox DW (1954) DE 1033291

  5. Beck HJ, Schmidt K (1956) DE 1199909

  6. Bhanu VA (2008) Mater Eng 293:340–349

    Google Scholar 

  7. Jackson EH, Hall RW (1938) US 2307588

  8. Beck HJ, Schmidt K (1961) DE 1445263

  9. Biondi G (2008) Macromol Mater Eng 293:361–372

    Article  Google Scholar 

  10. Murray TJ (2008) Macromol Mater Eng 293:350–360

    Article  Google Scholar 

  11. Lavin E (1966) US 3260691

  12. Beau de Lomente G, Armegaud A, Houssard G (1959) FR 1239491

  13. Suzuki K, Murouchi K, Magari Y (2001) Hitachi Cable Rev 20:91–96

    Google Scholar 

  14. Frazier AB (1995) Trans Ind Electron 42:442–448

    Article  Google Scholar 

  15. Ragosta G, Abbate M, Musto P, Scarinzi G (2012) J Mater Sci 47:2637–2647

    Article  Google Scholar 

  16. Mehdipour-Ataei S, Bahri-Laleh N (2008) Iran Polym J 17:95–124

    Google Scholar 

  17. Scola D, Vontell JH (1988) Polym Compos 9:443–452

    Article  Google Scholar 

  18. Miyadera N, Kuroda T, Takahashi T, Yamamoto R, Yamaguchi M, Yagi S, Koibuchi S (2003) Mol Cryst Liq Cryst 406:39–49

    Article  Google Scholar 

  19. Vinogradovja SV, Vygodskijv S, Korsak V, Spirina TN (1979) Acta Polym 30:3–14

    Article  Google Scholar 

  20. Liaw DJ, Liaw BJ (1998) Chem Mater 10:734–739

    Article  Google Scholar 

  21. Choi K, Junga J, Kim H, Sohn B, Zin W, Ree M (2004) Polymer 45:1517–1524

    Article  Google Scholar 

  22. Alam SM, Kawauchi T, Takeichi T (2010) High Perform Polym 22:742–760

    Article  Google Scholar 

  23. Liu L, Weng L, Zhu X, Yang L, Lei Q (2009) Proceedings of the 9th international conference on properties and applications of dielectric materials 19–23

  24. Jinghe Z, Mingyan Z, Qibin J, Binfen C, Yong F (2005) Electrical insulation conference and electrical manufacturing expo pp 182–186

  25. Zhou H, Fan Y, Le Q (2005) Electrical insulation conference and electrical manufacturing expo, pp 175–177

  26. Zhou H, Fan Y, Lei Q (2006) Properties and applications of dielectric materials, 8th international conference 736–738

  27. Mingyan Z, Shujin Z, Tiequan D, Jinghe Z, Yong F, Xiaohong Z, Qingquan L (2005) lntemational symposium on electrical insulating materials, pp 203–205

  28. Hsu SC, Whang WT, X Hung CH, Chiang PC, Hsiao YN (2005) Macromol Chem Phys 206:291–298

    Article  Google Scholar 

  29. Kim EK, Kim JH, Noh HK, Kim YH (2006) J Electron Mater 35:512–515

    Article  Google Scholar 

  30. Wang H, Zhong W, Xu P, Du Q (2005) Compos A 36:909–914

    Article  Google Scholar 

  31. Seyedjamali H, Pirisedigh A (2012) Colloid Polym Sci 290:653–659

    Article  Google Scholar 

  32. Zou C, Kushner D, Zhang S (2011) Appl Phys Lett 89:1–3

    Google Scholar 

  33. Bergmeister JJ, Rancourt JD, Taylor LT (1990) Chem Mater 2:640–641

    Article  Google Scholar 

  34. Bergmeister JJ, Taylor LT (1992) Chem Mater 4:729–737

    Article  Google Scholar 

  35. Goto T, Tsubouchi H (1988) J Mater Sci 23:3630–3635

    Article  Google Scholar 

  36. Mallakpour S, Madani M (2012) Bull Mater Sci 35:333–339

    Article  Google Scholar 

  37. Zhang MY, Zeng SJ, Fan Y, Zhang PH, Lei QQ (2008) Compos Polym 26(6):617–622

    Article  Google Scholar 

  38. Calebrese C, Hui L, Schadler LS, Nelson JK (2011) IEEE Trans Dielectr Electr Insul 18:938–945

    Article  Google Scholar 

  39. Hedrick JL, Carter KR, Labadie JW, Miller RD, Volksen W, Hawker CJ, Yoon DY, Russell TP, McGrath JE, Briber RM (1998) Adv Polym Sci 141:1–42

    Article  Google Scholar 

  40. Wahab MA, Kim I, Cho WJ, Ha CS (2004) Mol Cryst Liq Cryst 417:127–134

    Article  Google Scholar 

  41. Mascia Kioul A (1995) Polymer 36:3649–3659

    Article  Google Scholar 

  42. Babanzadeh S, Mehdipour-Ataei S, Mahjoub AR (2012) J Inorg Organomet Polym 22:1404–1412

    Article  Google Scholar 

  43. Patel HS, Vyas HS (1992) Die Angew Makromol Chem 195:1–16

    Article  Google Scholar 

  44. Kang JH, Cho K, Park CE (2001) Polymer 42:2513–2520

    Article  Google Scholar 

  45. Homringhausen CL, Kennedy BJ, Schutte EJ (2005) Polym Sci 43:4922–4932

    Article  Google Scholar 

  46. Bes L, Rousseau A, Boutevin B, Mercier R, Sillion B (2001) Macromol Chem Phys 202:933–942

    Article  Google Scholar 

  47. Bes L, Rousseau A, Boutevin B, Mercier R (2001) J Polym Sci 39:2602–2619

    Article  Google Scholar 

  48. Florjanczyk E, Orzeszko A (2002) Polym Bull 48:431–438

    Article  Google Scholar 

  49. Pfeifer S, Schwarzer A, Schmidt D, Brendler E, Veith M, Kroke E (2013) New J Chem 37:169–180

    Article  Google Scholar 

  50. DIN EN (2010) 60851-2:2010-08

  51. DIN EN (2005) 60851-5:2005-04

  52. DIN EN (2009) 60851-3:2009-12

  53. Hook RJ (1996) J Non Cryst Solids 195:1–15

    Article  Google Scholar 

  54. Bennevault-Celton V, Maciejak O, Desmazières B, Cheradame H (2010) Polym Int 59:1273–1281

    Article  Google Scholar 

  55. Sugahara Y, Okada S, Kuroda K, Kato C (1992) J Non Cryst Solids 139:25–34

    Article  Google Scholar 

  56. Roche V, Perrin FX, Gigmes X, Vacandio F, Ziarelli F, Bertin D (2010) Thin Solid Films 518:3640–3645

    Article  Google Scholar 

  57. Beari F, Brand M, Jenkner P, Lehnert R, Metternich HJ, Monkiewicz J, Siesler HW (2001) J Organomet Chem 625:208–216

    Article  Google Scholar 

  58. Rousseau F, Poinsignon C, Garcia J, Popall M (1995) Chem Mater 7:828–843

    Article  Google Scholar 

  59. Ek S, Iiskola EI, Niinistö L, Vaittinen J, Pakkanen TT, Root A (2004) J Phys Chem Part B 108:11454–11463

    Article  Google Scholar 

  60. Mühlenbrock P (2004) Fachtagung Elektroisoliersysteme 11:1–8

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dana Schmidt (TU Bergakademie Freiberg) for her help measuring liquid NMR spectra. This project was supported by a Grant (FKZ1775X05) from the FH³ BMBF program in the context of cooperative project “Entwicklung einer nanoskaligen Kupferlackdrahtbeschichtung für den Einsatz in der Automobil- und Medizintechnik (NanoCuL)”. We thank the people working for ISODRA for help with the copper wire coating experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Kroke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeifer, S., Brendler, E., Veith, M. et al. Hybrid-coatings derived from pyromellitic acid bridged alkoxy-silylalkyl precursors. J Sol-Gel Sci Technol 70, 191–202 (2014). https://doi.org/10.1007/s10971-014-3343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3343-3

Keywords

Navigation