Skip to main content
Log in

Amorphous titanium dioxide as an adsorbent for dye polluted water and its recyclability

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Amorphous TiO2, synthesized from TiCl4 and diluted NH3 solution, was characterized by X-ray diffraction spectrometry, UV–Vis diffused reflectance spectroscopy, Fourier-transformed infrared spectroscopy, and scanning electron microscopy. The powder exhibited high specific surface area at 508 m2/g as measured by the Brunauer-Emmett-Teller method. The pH at point of zero charge of the as-prepared amorphous TiO2 was determined by the pH drift method to be 6.8. The product was studied for its sorption efficiency using two dyes—crystal violet (CV) and malachite green (MG). Studies on the effects of various sorption parameters (contact time, TiO2 dosage, pH of solution, and initial concentration of dye) were carried out in order to find the optimum adsorption conditions for which the results were: contact time ~30 min, TiO2 dosage ~0.05–0.1 g, pH 7–9, and initial concentration <1 × 10−4 M. The adsorption data were analyzed and fitted better with the Langmuir model than the Freundlich model. The maximum adsorption capacities obtained from the Langmuir model were 0.4979 and 0.4075 mmol dye/g TiO2 for CV and MG dye, respectively. In addition, the regeneration and the recyclability of the prepared amorphous TiO2 were also studied. The used adsorbent should be regenerated 10–12 h before reuse in the next cycle for the best result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Appl Microbiol Biotechnol 56:81

    Article  Google Scholar 

  2. Pearce CI, Lloyd JR, Guthrie JT (2003) Dyes Pigm 58:179

    Article  Google Scholar 

  3. Crini G (2006) Bioresour Technol 97:1061

    Article  Google Scholar 

  4. Sun Q, Yang L (2003) Wat Res 37:1535

    Article  Google Scholar 

  5. Jain AK, Gupta VK, Bhatnagar A, Suhas (2003) J Hazard Mater 101:31

  6. Nagappa B, Chandrappa GT (2007) Micropor Mesopor Mater 106:212

    Article  Google Scholar 

  7. Neppolian B, Wang Q, Jung H, Choi H (2008) Ultrason Sonochem 15:649

    Google Scholar 

  8. Zelmanov G, Semiat R (2008) Wat Res 42:492

    Article  Google Scholar 

  9. Hu ZG, Zhang J, Chan WL, Szeto YS (2006) Polymer 47:5838

    Article  Google Scholar 

  10. Shu H-Y, Chang MC, Yu HH, Chen WH (2007) J Coll Interf Sci 314:89

    Article  Google Scholar 

  11. Du WL, Xu ZR, Han XY, Xu YL, Miao ZG (2008) J Hazard Mater 153:152

    Article  Google Scholar 

  12. Konstantinou IK, Albanis TA (2004) Appl Catal B Environ 49:1

    Article  Google Scholar 

  13. Tan X, Fan Q, Wang X, Grambow B (2009) Environ Sci Technol 43:3115

    Article  Google Scholar 

  14. Tel H, Alta Y, Taner MS (2004) J Hazard Mater 112:225

    Article  Google Scholar 

  15. Kanna M, Wongnawa S, Sherdshoopongse P, Boonsin P (2005) Songklanakarin J Sci Technol 27:1017

    Google Scholar 

  16. Kanna M, Wongnawa S, Buddee S, Dilokkhunakul K, Pinpithak P (2010) J Sol-Gel Sci Technol 53:162

    Article  Google Scholar 

  17. Dai Q, Shi LY, Luo YG, Blin JL, Li DJ, Yuan CW, Su BL (2002) J Photochem Photobiol A: Chem 148:295

    Google Scholar 

  18. Wang ZC, Chen JF, Hu XF (2000) Mater Lett 43:87

    Article  Google Scholar 

  19. Belver C, Bellod R, Fuerte A, Fernandez-Garcıa M (2006) Appl Catal B: Environ 65:301

    Article  Google Scholar 

  20. Zhang J, Li M, Feng Z, Chen J, Li C (2002) J Phys Chem B 110:927

    Article  Google Scholar 

  21. Khalil T, Abou El-Nour F, El-Gammal B, Boccaccini AR (2001) Powder Technol 114:106

  22. Bessekhouad Y, Robert D, Weber JV, Chaoui N (2004) J Photochem Photobiol A: Chem 167:49

    Article  Google Scholar 

  23. Nandi BK, Goswami A, Purkait MK (2009) Appl Clay Sci 42:583

    Article  Google Scholar 

  24. Crini G, Peindy HN, Gimbert F, Robert C (2007) Sep Pur Technol 53:97

    Article  Google Scholar 

  25. Hameed BH, El-Khaiaryb MI (2008) J Hazard Mater 159:574

    Article  Google Scholar 

  26. Ahmad R (2009) J Hazard Mater 171:767

    Article  Google Scholar 

  27. Madhavakrishnan S, Manickavasagam K, Vasanthakumar R, Rasappan K, Mohanraj R, Pattabhi S (2009) E-J Chem 6:1109

    Article  Google Scholar 

  28. Han R, Wang Y, Sun Q, Wang L, Song J, He X, Dou C (2010) J Hazard Mater 175:1056

    Article  Google Scholar 

  29. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) J Coll Interf Sci 343:463

    Article  Google Scholar 

  30. Erdem EG, Donat R (2005) J Coll Interf Sci 282:314

    Article  Google Scholar 

  31. Wang XS, Zhou Y, Yiang Y, Sun C (2008) J Hazard Mater 157:374

    Article  Google Scholar 

  32. Cicek F, Ozer D, Ozer A, Ozer A (2007) J Hazard Mater 146:408

    Article  Google Scholar 

  33. Wang X, Zhu N, Yin B (2008) J Hazard Mater 153:22

    Article  Google Scholar 

  34. Beyers E, Biermans E, Ribbens S, Witte KD, Mertens M, Meynen V, Bals S, Tendeloo GV, Vansant EF, Pool P (2009) Appl Catal B: Environ 88:515

    Article  Google Scholar 

  35. Garg VK, Gupta R, Yadav AB, Kumar R (2003) Bioresour Technol 89:121

    Article  Google Scholar 

  36. Aguedach A, Brosillon S, Morvan J, Lhadi EK (2005) Appl Catal B: Environ 57:55

    Article  Google Scholar 

  37. Jindarom C, Meeyoo V, Kitiyanan B, Rirksomboon T, Rangsunvigit P (2007) Chem Eng J 133:239

    Article  Google Scholar 

  38. Belessi V, Romanosa G, Boukosa N, Lambropouloud D, Trapalis C (2009) J Hazard Mater 170:836

    Article  Google Scholar 

  39. Suwanchawalit C, Wongnawa S (2008) Appl Catal A: Gen 338:87

    Article  Google Scholar 

  40. Baiju KV, Shukla S, Sandhya KS, James J, Warrier KGK (2007) J Phys Chem C 111:7612–7622

    Article  Google Scholar 

  41. Parfitt GD (1976) Pure Appl Chem 48:415

    Article  Google Scholar 

  42. Senthilkumaar S, Kalaamani P, Subburaam CV (2006) J Hazard Mater 136:800

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Center of Excellent for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, and the Graduate School, Prince of Songkla University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumpun Wongnawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 452 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriprang, P., Wongnawa, S. & Sirichote, O. Amorphous titanium dioxide as an adsorbent for dye polluted water and its recyclability. J Sol-Gel Sci Technol 71, 86–95 (2014). https://doi.org/10.1007/s10971-014-3327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3327-3

Keywords

Navigation