Skip to main content

Advertisement

Log in

Sol–gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The zirconia ceramics offers the required biocompatibility and corrosion resistance in the physiological medium, making it applicable for biomaterials. But, adequate utilization of porous zirconium dioxide (ZrO2) thin film has not been assessed. Hence, in the present work an attempt has been made to utilize the corrosion resistance and biocompatibility property of porous ZrO2. The ZrO2 were prepared using the sol–gel process and coated on 316L SS substrate via dip-coating technique. The phase composition, morphology and the elemental distribution of the coatings were investigated using X-ray diffraction analysis, atomic force microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The results revealed that the coated surface was porous, uniform and relatively well crystalline on the substrate. In vitro evaluation of the ZrO2 coated 316L SS samples were carried out in simulated body fluid and the corrosion resistance of the ZrO2 coated samples were examined using potentiodynamic cyclic polarisation and electrochemical impedance spectroscopy in simulated body fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guruppa J (2002) Surf Coat Technol 161:70. doi:10.1016/S0257-8972(02)00380-8

    Article  Google Scholar 

  2. Sivakumar M, Kamachi Mudali U, Rajeswari SJ (1994) J Mater Eng Perform 3:744. doi:10.1007/BF02818375

    Article  CAS  Google Scholar 

  3. Meinort K, Wolf GK (1998) Surf Coat Technol 98:1148. doi:10.1016/S0257-8972(97)00288-0

    Article  Google Scholar 

  4. Jacobs JJ, Gilbert JL, Urban RM (1998) J Bone Joint Surg 80A:268

    Google Scholar 

  5. Morais S, Sousa JP, Fernandes MH, Carvalho GS, de Bruijn JD, Blitterswijk CA (1998) Biomaterials 19:999. doi:10.1016/S0142-9612(97)00234-2

    Article  PubMed  CAS  Google Scholar 

  6. Kirk Peter B, Filliaggi Mark J, Sodhi Rana NS, Pilliar Robert M (1991) J Biomed Mater Res 48:424. doi:10.1002/(SICI)1097-4636(1999)48:4<424:AID-JBM5>3.0.CO;2-1

    Article  Google Scholar 

  7. Mandl S, Rauschenbach B (2002) Surf Coat Technol 156:276. doi:10.1016/S0257-8972(02)00085-3

    Article  CAS  Google Scholar 

  8. Singh R, Dahotre NB (2005) Surf Eng 21:297. doi:10.1179/174329405X55320

    Article  CAS  Google Scholar 

  9. Chu PK, Chen JY, Wang LP, Huang N (2002) Mater Sci & Eng R36:143. doi:10.1016/S0927-796X(02)00004-9

    CAS  Google Scholar 

  10. Garcia-alonso MC, Saldana L, Valles G, Gonzalez-Carrasco JL, Gonzalez-Cabrero J, Martinez ME, Gill-Garay E, Munuera L (2003) Biomaterials 24:19. doi:10.1016/S0142-9612(02)00237-5

    Article  PubMed  CAS  Google Scholar 

  11. Galliano P, de Pamborenea JJ, Pascud MJ, Duran A (1998) J Sol-Gel Sci Tech 13:723. doi:10.1023/A:1008653208083

    Article  CAS  Google Scholar 

  12. Gallardo J, Moreno R, Galliano P, Duran A (2000) J Sol-Gel Sci Tech 19:107. doi:10.1023/A:1008726608539

    Article  CAS  Google Scholar 

  13. Sakk S (1994) J Sol-Gel Sci Tech 2:451. doi:10.1007/BF00486289

    Article  Google Scholar 

  14. Paterson MJ, McCulloch DG, Paterson PJK, Ben-Nissan B (1997) Thin Solid Films 311:196. doi:10.1016/S0040-6090(97)00723-2

    Article  ADS  CAS  Google Scholar 

  15. Burger W, Richter HG, Piconi C, Vatteroni R, Cittadini A, Boccalari M (1997) J Mater Sci: Mater Med 8:113. doi:10.1023/A:1018562917779

    Article  CAS  Google Scholar 

  16. Piconi C, Maccauro G (1999) Biomaterials 20:1. doi:10.1016/S0142-9612(98)00010-6

    Article  PubMed  CAS  Google Scholar 

  17. Filiaggi Mark J, Pilliar Robert M, Abdulla David (1998) J Biomed Mater Res 33:239. doi:10.1002/(SICI)1097-4636(199624)33:4<239::AID-JBM4>3.0.CO;2-Q

    Article  Google Scholar 

  18. Kokubo T, Takadama H (2006) Biomaterials 27:2907. doi:10.1016/j.biomaterials.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  19. Zhao S, Ma F, Song Z, Xu K (2008) Opt Mater 30:910. doi:10.1016/j.optmat.2007.04.001

    Article  ADS  CAS  Google Scholar 

  20. Le Duc Huy, Laffez P, Daniel Ph, Jouanneaux A, Nguyen The Khoi, Siméone D (2003) J Mater Sci Eng B104:163. doi:10.1016/S0921-5107(03)00190-9

  21. Lindgren T, Muabora JH, Avendeno E, Jonsson J, Hoel A, Granquist CG, Lindquist SE (2003) J Phys Chem B 107:5703. doi:10.1021/jp034077w

    Article  CAS  Google Scholar 

  22. Teufer G (1962) Acta Crystallogr 15:1187

    Article  CAS  Google Scholar 

  23. Hembram KPSS, Dutta G, Waghmare UV, Mohan Rao G (2007) Phys B 399:21. doi:10.1016/j.physb.2007.05.022

    Article  ADS  CAS  Google Scholar 

  24. Yu J, Yu JC, Cheng B, Zhao X, Zheng Z, Li ASK (2002) J Sol-Gel Sci Tech 22:229. doi:10.1023/A:1015384624389

    Article  Google Scholar 

  25. Perdomol F, de Lima-neto P, Aegerter MA, Avaca LA (1999) J Sol-Gel Sci Tech 15:87. doi:10.1023/A:1008769231899

    Article  Google Scholar 

  26. Vallet-Regi M, Romero AM, Ragel CV, Leoros RZ (1999) J Biomed Mater Res 44:416. doi:10.1002/(SICI)1097-4636(19990315)44:4<416::AID-JBM7>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  27. Le Goros RZ (1981) Prog J Cryst Grow Charact 4:1

    Article  Google Scholar 

  28. Balamurugan A, Balossier G, Kannan S, Michel J, Faure J, Rajeswari S (2007) Ceram Int 33:605. doi:10.1016/j.ceramint.2005.11.011

    Article  CAS  Google Scholar 

  29. Chang S-m, Doong R-a (2005) Thin Solid Films 489:17. doi:10.1016/j.tsf.2005.04.076

    Article  ADS  CAS  Google Scholar 

  30. Uchider Masaki, Minkim Hijan, Kokubo Tadashi (2001) J Amer Ceram Soc 84:2041. doi:10.1016/j.ceramint.2005.11.011

    Article  Google Scholar 

  31. Ohtsukic, Kokubo T, Yamanuro T (1992) J Non-Cryst Solids 143:84. doi:10.1016/S0022-3093(05)80556-3

    Article  ADS  Google Scholar 

  32. Jones DA, Wilde BE (1978) Corros Sci 18:631. doi:10.1016/0010-938X(78)90056-2

    Article  CAS  Google Scholar 

  33. Gallardo J, Galliano P, Duran A (2001) J Sol-Gel Sci Tech 21:65. doi:10.1023/A:1011257516468

    Article  CAS  Google Scholar 

  34. Raman V, Tamilselvi S, Rajendran N (2007) Electrochimica Acta 52:7418. doi:10.1016/j.electacta.2007.06.040

    Article  CAS  Google Scholar 

  35. Aziz Kerrzo M, Conrog Kenneth G, Fenelon Anna M, Farrell Sinead T, Breslin Carmel B (2001) Biomaterials 22:1531. doi:10.1016/S0142-9612(00)00309-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors S. Nagarajan is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, S., Rajendran, N. Sol–gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications. J Sol-Gel Sci Technol 52, 188–196 (2009). https://doi.org/10.1007/s10971-009-2024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2024-0

Keywords

Navigation