Skip to main content
Log in

Detection efficiency calculations using Geant4 for a broad-energy germanium gamma spectrometer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In assistance of radionuclide measurements at Canada’s Comprehensive Nuclear-Test-Ban Treaty (CTBT) laboratory, a Geant4 Monte Carlo application has been developed in simulating a broad-energy germanium detector and calculating detection efficiencies. The detector model was optimized in a reliable and non-biased manner through simultaneous tuning on gap distance and detector dimension, and was validated over various realistic measurement scenarios. All work is based on a series of experiments which covers the typical energy range of gamma radiation in environmental analysis, and considers the variety of the CTBT sample type, dimension and distance-to-detector. In all cases, the predicted efficiencies are consistent with the empirical ones within 5%, with a typical deviation of 3% in majority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schötzig U, Debertin K, Walz KF (1980) Efficiency calibration of germanium-spectrometers in the energy range from 122-412 keV. Nucl Instr Methods 169:43–51

    Article  Google Scholar 

  2. Debertin K, Grosswendt B (1982) Efficiency calibration of semiconductor detectors by primary standard sources and Monte Carlo calculations. Nucl Instr Methods 203:343–352

    Article  CAS  Google Scholar 

  3. Helmer RG (1982) Efficiency calibration of a Ge detector for 30–2800 keV γ rays. Nucl Instr Methods Phys Res 199:521–529

    Article  CAS  Google Scholar 

  4. Haase G, Tait D, Wiechen A (1995) Determination of full energy peak efficiency for cylindrical volume sources by the use of a point source standard in gamma spectrometry. Nucl Instr Methods Phys Res A361:240–244

    Article  Google Scholar 

  5. Ródenas J, Martinavarro A, Rius V (2000) Validation of the MCNP code for simulation of Ge-detector calibration. Nucl Instr Methods Phys Res A450:88–97

    Article  Google Scholar 

  6. Hurtado S, García-Léon M, García-Tenorio R (2004) Monte Carlo simulation of the response of a germanium detector for low-level spectrometry measurements using GEANT4. Appl Radiat Isot 61:139–143

    Article  CAS  Google Scholar 

  7. Salgado CM, Conti C, Becker P (2006) Determination of HPGe detector response using MCNP5 for 20-150 keV X-rays. Appl Radiat Isot 64:700–705

    Article  CAS  Google Scholar 

  8. Helmer RG, Hardy JC, Jacob VE, Sanchez-Vega M, Neilson RG, Nelson J (2003) The use of Monte Carlo calculations in the determination of a Ge detector efficiency curve. Nucl Instr Methods Phys Res A511:360–381

    Article  Google Scholar 

  9. Peyres V, García-Toraño E (2007) Efficiency calibration of an extended-range Ge detector by a detailed Monte Carlo simulation. Nucl Instr Methods Phys Res A580:296–298

    Article  Google Scholar 

  10. Hurtado S, García-Léon M, García-Tenorio R (2004) GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nucl Instr Methods Phys Res A518:764–774

    Article  Google Scholar 

  11. Hardy JC, Jacob VE, Sanchez-Vega M, Effinger RT, Lipnik P, Mayes VE, Willis DK, Helmer RG (2002) Precise efficiency calibration of an HPGe detector:source measurement and Monte Carlo calculations with sub-percent precision. Appl Radiat Isot 56:65–69

    Article  CAS  Google Scholar 

  12. Britton R, Burnett JL, Davies AV, Regan PH (2013) Determining the efficiency of a broad-energy HPGe detector using Monte Carlo simulations. J Radioanal Nucl Chem 295:2035–2041

    Article  CAS  Google Scholar 

  13. Cagniant A (2015) Ph.D Thesis, “Développement et modélisation d’un spectromètre multidétecteur Ge/Si pour la détection des ultra-traces de produits de fission dans l’environnement”, April 3rd, 2015, L’Université Pierre et Marie Curie

  14. Nikolic J, Vidmar T, Jokovic D, Rajacic M, Todorovic D (2014) Calculation of HPGe efficiency for environmental samples: comparison of EFFTRAN and GEANT4. Nucl Instr Methods Phys Res A763:347–353

    Article  Google Scholar 

  15. Budjás D, Heisel M, Maneschg W, Simgen H (2009) Optimisation of the MC-model of a p-type Ge-spectrometer for the purpose of efficiency determination. Appl Radiat Isot 67:706–710

    Article  Google Scholar 

  16. McNamara AL, Heijnis H, Fierro D, Reinhard MI (2012) The determination of the efficiency of a Compton suppressed HPGe detector using Monte Carlo simulations. J Environ Radioact 106:1–7

    Article  CAS  Google Scholar 

  17. Szentmiklosi L, Belgya T, Maroti B, Kis Z (2014) Characterization of HPGe gamma spectrometers by geant4 Monte Carlo simulations. J Radioanal Nucl Chem 300:553–558

    Article  CAS  Google Scholar 

  18. Pelowitz D.B. (2011). MCNPX User’s Manual Version 2.7.0. LA-CP-11-00438

  19. Agotinelli S et al (2003) Geant4 - a simulation toolkit. Nucl Instr Methods Phys Res A506:250–303

    Article  Google Scholar 

  20. Allison J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53:270–278

    Article  Google Scholar 

  21. BEGe specification (2015). BEGe data sheet (2015) http://www.canberra.com. Accessed May 2015

  22. Knoll GF (2010) Radiation detection and measurement, 4th edn. Wiley, New York

    Google Scholar 

  23. Plenteda R (2002). A Monte Carlo Based Virtual Gamma Spectroscopy Laboratory. Ph.D. Thesis. Universitätsbibliothek der Technischen Universität Wien

  24. Montgomery DM, Montgomery GA (1995) J Radioanal Nucl Chem 193:71–79

    Article  CAS  Google Scholar 

  25. W. Zhang, H. Ro, C. Liu and K. Ungar (2017). Design and optimization of a dual-HPGe gamma spectrometer and its cosmic veto system for low-level environmental radioactivity monitoring. IEEE Trans Nucl Sci 64:1–7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanlei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ungar, K., Pierce, D. et al. Detection efficiency calculations using Geant4 for a broad-energy germanium gamma spectrometer. J Radioanal Nucl Chem 312, 471–478 (2017). https://doi.org/10.1007/s10967-017-5239-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5239-5

Keywords

Navigation