Skip to main content
Log in

Synthesis and biological evaluation of 99mTc labeled aryl piperazine derivatives as cerebral radiotracers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study is to develop cerebral radiotracers for central nervous system receptors imaging. The synthesis, characterization and biological evaluation of two aryl piperazine 99mTc-radiocomplexes based on the piano stool motif [CpM(CO3)] (Cp = cyclopentadienyl, M = 99mTc/Re) is reported. The 99mTc-radiocomplexes were obtained quickly (time < 5 min) with high radiochemical yields. The 99mTc-radiocomplexes characterized by high performance liquid chromatography comparison with the rhenium surrogates have both a suitable lipophilicity and are able to cross the blood brain barrier with 0.43 ± 0.05 and 1.96 ± 0.06% ID/g of brain uptake, at 10 min post injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jürgens S, Herrmann WA, Kühn FE (2014) Rhenium and technetium based radiopharmaceuticals: development and recent advances. J Organomet Chem 751:83–89

    Article  Google Scholar 

  2. Morais GR, Paulo A, Santos I (2012) Organometallic complexes for SPECT imaging and/or radionuclide therapy. Organometallics 31:5693–5714

    Article  CAS  Google Scholar 

  3. Duatti A (2009) Radioisotopes and radiopharmaceuticals series no. 1. International Atomic Energy Agency, Vienna

  4. Johannsen B, Pietzsch HJ (2002) Development of technetium-99 m based CNS receptor ligands: have there been any advances? Eur J Nucl Med Mol I. 29:263–275

    Article  Google Scholar 

  5. Abram U, Alberto R (2006) Technetium and rhenium: coordination chemistry and nuclear medical applications. J Braz Chem Soc. 17:1486–1500

    Article  CAS  Google Scholar 

  6. Schibli R, Schubiger AP (2002) Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol I. 29:1529–1542

    Article  CAS  Google Scholar 

  7. Alberto R, Abram U (2011) Handbook of nuclear chemistry. Springer, Berlin

    Google Scholar 

  8. Li D, Chen Y, Wang X, Deuther-Conrad W, Chen X, Jia B, Dong C, Steinbach J, Brust P, Liu B, Jia H (2016) 99mTc-cyclopentadienyl tricarbonyl chelate-labeled compounds as selective sigma-2 receptor ligands for tumor imaging. J Med Chem 59:934–946

    Article  CAS  Google Scholar 

  9. Zeng H, Zhang H (2014) Synthesis and biological evaluation of fatty acids conjugates bearing cyclopentadienyl donors incorporated [99mTc/Re(CO)3]+ for myocardical imaging. Eur J Med Chem 72:10–17

    Article  CAS  Google Scholar 

  10. Wang X, Li D, Deuther-Conrad W, Lu J, Xie Y, Jia B, Jia H (2014) Novel cyclopentadienyl tricarbonyl 99mTc complexes containing 1-piperonylpiperazine moiety: potential imaging probes for sigma-1 receptors. J Med Chem 57:7113–7125

    Article  CAS  Google Scholar 

  11. Alberto R, Schibli R, Schubiger AP, Abram U, Pietzsch HJ, Johannsen B (1999) First application of fac-[99mTc(H2O)3(CO)3]+ in bioorganometallic chemistry: design, structure, and in vitro affinity of a 5-HT1A receptor ligand labeled with 99mTc. J Am Chem Soc 121:6076–6077

    Article  CAS  Google Scholar 

  12. Wald J, Alberto R, Ortner K, Candreia L (2001) Aqueous one-pot synthesis of derivatized cyclopentadienyl-tricarbonyl complexes of 99mTc with an in situ CO source: application to a serotonergic receptor ligand. Angew Chem Int Ed 40:3062–3066

    Article  CAS  Google Scholar 

  13. Bernard J, Ortner K, Spingler B, Pietzsch HJ, Alberto R (2003) Aqueous synthesis of derivatized cyclopentadienyl complexes of technetium and rhenium directed toward radiopharmaceutical application. Inorg Chem 42:1014–1022

    Article  CAS  Google Scholar 

  14. Abdelounis NM, Saied NM, Essouissi I, Guizani S, Saidi M (2014) Synthesis and initial biological evaluation of a novel Tc-99m radioligand as a potential agent for 5-HT1A receptor imaging. Radiochim Acta 102:541–552

    Article  CAS  Google Scholar 

  15. Mejri N, Barhoumi C, Trabelsi M, Mekni A, Said NM, Saidi M (2010) A 1-methyl-4-piperidinyl cytectrene carboxylate labeled by the technetium 99m, a radiotracer for rat brain acetylcholinesterase activity. Nucl Med Biol 37:143–148

    Article  CAS  Google Scholar 

  16. Mejri N, Said NM, Guizani S, Essouissi I, Saidi M (2013) Preliminary studies of acetylcholinesterase activity in the rat brain using N-phenylferrocenecarboxamide labelled by the technetium-99m. Nucl Med Biol 40:561–566

    Article  CAS  Google Scholar 

  17. El-Aissi R, Malek-Saied N, Saidi M, Mallet-Ladeira S, Coulais Y, Benoist E (2015) New neutral and lipophilic technetium complexes based on a cytectrene moiety: synthesis, characterization and biological evaluation. Radiochim Acta 103:125–136

    Article  CAS  Google Scholar 

  18. Saied NM, Mejri N, El-Aissi R, Benoist E, Saidi M (2015) Preparation and biodistribution of 1-((2-methoxyphenyl) piperazine) ferrocenecarboxamide labeled with technetium-99m as a potential brain receptor imaging agent. Eur J Med Chem 97:280–288

    Article  CAS  Google Scholar 

  19. Carvalho MMG, Zeraib AB, Muramoto E, Almeida MATM (2004) Technical reports series no. 426. International Atomic Energy Agency, Vienna

  20. Li Z, Cui M, Dai J, Wang X, Yu P, Yang Y, Jia J, Fu H, Ono M, Jia H, Saji H, Liu B (2013) Novel cyclopentadienyl tricarbonyl complexes of 99mTc mimicking chalcone as potential single-photon emission computed tomography imaging probes for beta-amyloid plaques in brain. J Med Chem 56:471–482

    Article  CAS  Google Scholar 

  21. Malek-Saied N, Aissi RE, Ladeira S, Benoist E (2011) Synthesis and biological evaluation of a novel 99mTc cyclopentadienyl tricarbonyl technetium complex as a new potential brain perfusion imaging agent. Appl Organomet Chem 25:680–686

    CAS  Google Scholar 

  22. Alberto R, Egli A, Abram U, Hegetschweiler K, Gramlich V, Schubiger PA (1994) Synthesis and reactivity of [NEt4]2[ReBr3(CO)3]. Formation and structural characterization of the clusters [NEt4][Re3(µ-OH)(µ-OH)3(CO)9] and [NEt4][Re2(µ-OH)3(CO)6] by alkaline titration. Dalton Trans 19:2815–2820

    Article  Google Scholar 

  23. Spradau TW, Katzenellenbogen JA (1998) Preparation of cyclopentadienyl tricarbonyl rhenium complexes using a double ligand-transfer reaction. Organometallics 17:2009–2017

    Article  CAS  Google Scholar 

  24. Wenzel M (1992) 99mTc markierung von cymantren-analogen verbindungen mit verschiedenen substituenten-ein neuer zugang zu 99mTc radiodiagnostika. J Label Compd Radiopharm 31:641–650

    Article  CAS  Google Scholar 

  25. Saidi M, Seifert S, Kretzschmar M, Bergmann R, Pietzsch HJ (2004) Cyclopentadienyl tricarbonyl complexes of 99mTc for the in vivo imaging of the serotonin 5-HT1A receptor in the brain. J Organomet Chem 689:4739–4744

    Article  CAS  Google Scholar 

  26. Masi S, Top S, Boubekeur L, Jaouen G, Mundwiler S, Spingler B, Alberto R (2004) Direct synthesis of tricarbonyl (cyclopentadienyl) rhenium and tricarbonyl (cyclopentadienyl) technetium units from ferrocenyl moieties preparation of 17α-ethynylestradiol derivatives bearing a tricarbonyl (cyclopentadienyl) technetium group. Eur J Inorg Chem 2004:2013–2017

    Article  Google Scholar 

  27. Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA (1998) A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(H2O)3(CO)3]+ from [99mTcO4] in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc 120:7987–7988

    Article  CAS  Google Scholar 

  28. Waterhouse RN (2003) Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 5:376–389

    Article  Google Scholar 

  29. Mang’era KO, Vanbilloen HP, Bellande E, Pasqualini R, Verbruggen AM (1996) Influence of a 99mTcN core on the biological and physicochemical behavior of 99mTc complexes of L, L-EC and L, L-ECD. Nucl Med Biol 23:987–993

    Article  Google Scholar 

  30. Fang P, Wu CY, Liu ZG, Wan WX, Wang TS, Chen ZP, Zhou X (2000) The preclinical pharmacologic study of dopamine transporter imaging agent [99mTc] TRODAT-1. Nucl Med Biol 27:69–75

    Article  CAS  Google Scholar 

  31. Chiotellis A, Tsoukalas C, Pelecanou M, Pirmettis I, Papadopoulos M (2011) New 99mTc(CO)3(NNO) complexes in the development of 5HT1A receptor imaging agents. Radiochim Acta 99:307–315

    Article  CAS  Google Scholar 

  32. Zhang X, Zhou P, Liu J, Huang Y, Lin Y, Chen Y, Gu T, Yang W, Wang X (2007) Preparation and biodistribution of 99mTc-tricarbonyl complex with 4-[(2-methoxyphenyl) piperazin-1-yl]-dithioformate as a potential 5-HT1A receptor imaging agent. Appl Radiat Isot 65:287–292

    Article  CAS  Google Scholar 

  33. Chen X, Cui MC, Deuther-Conrad W, Tu YF, Ma T, Xie Y, Jia B, Li Y, Xie F, Wang X (2012) Synthesis and biological evaluation of a novel 99mTc cyclopentadienyl tricarbonyl complex ([(Cp-R)99mTc(CO)3]) for sigma-2 receptor tumor imaging. Bioorg Med Chem Lett 22:6352–6357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaouther Zenati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenati, K., Malek Saied, N., Asmi, A. et al. Synthesis and biological evaluation of 99mTc labeled aryl piperazine derivatives as cerebral radiotracers. J Radioanal Nucl Chem 312, 67–74 (2017). https://doi.org/10.1007/s10967-017-5201-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5201-6

Keywords

Navigation