Skip to main content
Log in

Validation of gravimetry for high-accuracy analysis of uranium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Gravimetry after calcination is an assay method for determining the quantity of a given element from the mass measurement. This method, adapted for high concentration and purity uranium solution, has the advantage of not being related to a chemical standard and of having an extremely high trueness and precision. Besides, the method is simple, robust and cost-effective. The results of the analytical method validation are shown. Expanded uncertainties, assessed thanks to a reference uranium nitrate solution, are lower than 0.2%. The technique can thus be used in addition to the well-known isotopic dilution thermal-ionisation mass-spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rivier C, Desenfant M, Crozet M, Rigaux C, Roudil D, Tuffery B, Ruas A (2014) Use of an excess variance approach for the certification of reference materials by interlaboratory comparison. Accredit Qual Assur 19:269–274

    Article  CAS  Google Scholar 

  2. Rivier C, Roudil D, Rigaux C, Cames B, Adnet JM, Eysseric C, Tuffery B, Ruas A, Lamouroux C, Casanova F, Organista M, Pochon P (2014) Validation of analytical methods for nuclear spent fuel reprocessing. Prog Nucl Energy 72:115–118

    Article  CAS  Google Scholar 

  3. Rivier C, Ruas A, Canto F, Esbelin E, Quemet A, Solinhac I, Rigaux C, Roudil D, Couston L, Herlet N (2015) Radiological and chemical analysis of medium and high activity samples: the example of LAMM laboratory in the ATALANTE facility. Proceedings of Global. P5364

  4. Quemet A, Maloubier M, Dalier V, Ruas A (2014) Development of an analysis method of minor uranium isotope ratio measurements using electron multipliers in Thermal Ionization Mass Spectrometry. Int J Mass Spectrom 374:26–32

    Article  CAS  Google Scholar 

  5. Quemet A, Maillard C, Ruas A (2015) Determination of zirconium isotope composition and concentration for nuclear sample analysis using Thermal Ionization Mass Spectrometry. Int J Mass Spectrom 392:34–40

    Article  CAS  Google Scholar 

  6. Quemet A, Maloubier M, Ruas A (2016) Contribution of the Faraday cup coupled to 1012 Ohms current amplifier to uranium 235/238 and 234/238 isotope ratio measurements by thermal ionization mass spectrometry. Int J Mass Spectrom 404:35–39

    Article  CAS  Google Scholar 

  7. Richter S, Kuhn H, Aregbe Y, Hedberg M, Horta-Domenech J, Mayer K, Zuleger E, Burger S, Boulyga S, Kopf A, Poths J, Mathew K (2011) Improvements in routine uranium isotope ratio measurements using the modified total evaporation method for multi-collector thermal ionization mass spectrometry. J Anal Atom Spectrom 26:550–564

    Article  CAS  Google Scholar 

  8. Burger S, Balsley SD, Baumann S, Berger J, Boulyga SF, Cunningham JA, Kappel S, Koepf A, Poths J (2012) Uranium and plutonium analysis of nuclear material samples by multi-collector thermal ionisation mass spectrometry: quality control, measurement uncertainty, and metrological traceability. Int J Mass Spectrom 311:40–50

    Article  Google Scholar 

  9. Aggarwal SK (2016) Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology—a review. Anal Methods 8:942–957

    Article  Google Scholar 

  10. Waterbury GR, Nelson GB, Bergstresser KS, Metz CF (1970) Controlled-potential coulometric and potentiometric titrations of uranium and plutonium in ceramic-type materials. LA-4537

  11. Boden RM, Demildt AC (1972) Problems encountered in high accuracy analysis of plutonium. Proceedings of the symposium on international atomic energy agency. pp 227–235

  12. Holland MK, Weiss JR, Pietri CE (1978) Controlled-potential coulometric determination of plutonium. Anal Chem 50:236–240

    Article  CAS  Google Scholar 

  13. Holland MK, Cordaro JV (2009) Mass measurement uncertainty for plutonium aliquots assayed by controlled-potential coulometry. J Radioanal Nucl Chem 282:555–563

    Article  CAS  Google Scholar 

  14. Ruas A, Leguay N, Sueur R, Vedel N, Dalier V, Moisy P (2014) High accuracy plutonium mass determination by controlled-potential coulometry. Radiochim Acta 102:691–699

    Article  CAS  Google Scholar 

  15. Sharma HS, Manolkar RB, Kamat JV, Marathe SG, Biswas AR, Kulkarni PG (1994) Preparation of carbonaceous electrodes and evaluation of their performance by electrochemical techniques. BARC/1994/E/1025

  16. Sharma HS, Jisha V, Noronha DM, Sharma MK, Aggarwal SK (2007) Performance evaluation of indigenous controlled potential coulometer for the determination of uranium and plutonium. BARC/2007/E/2012

  17. Dawson JK, Wait E, Alcock K, Chilton DR (1956) Some aspects of the system uranium trioxide-water. J Chem Soc 26:3531–3540

    Article  Google Scholar 

  18. Ondrejcin R, Garrett TP (1961) Thermal decomposition of anhydrous uranyl nitrate and uranyl nitrate dihydrate. J Phys Chem 65:470–473

    Article  CAS  Google Scholar 

  19. Lodding W, Ojamaa L (1965) Dehydration and thermal decomposition of uranyl nitrates in presence of steam. J Inorg Nucl Chem 27:1261–1268

    Article  CAS  Google Scholar 

  20. Smith WH (1968) Thermal dehydration of uranyl nitrate hydrates. J Inorg Nucl Chem 30:1761–1768

    Article  CAS  Google Scholar 

  21. Chottard G (1970) Décomposition thermique du nitrate d’uranyle hexahydraté. Etude des intermédiaires de cette décomposition. CEA-R-3717

  22. Kozlova RD, Matyukha VA, Dedov NV (2007) Mechanism and kinetics of thermal decomposition of uranyl nitrate hexahydrate under the nonisothermal conditions. Radiochemistry 49:130–134

    Article  CAS  Google Scholar 

  23. Palei PN, Riabchikov DI, Seniavin MM (1970) Analytical chemistry of uranium. Publishers Ann Arbor-Humphrey Science, New York

    Google Scholar 

  24. Vita OA, Walker CR, Litteral E (1973) Gravimetric determination of uranium in uranyl nitrate. Anal Chim Acta 64:249–257

    Article  Google Scholar 

  25. Katz JJ, Rabinowitch E (1951) The chemistry of uranium part I: the element, its binary and related compounds. McGraw-Hill, New York

    Google Scholar 

  26. Thein SM, Bereolos PJ (2000) Thermal Stabilization of 233UO2, 233UO3, and 233U3O8. ORNL/TM-2000/2082

  27. Roudil D, Rigaux C, Rivier C, Ruas A, Solinhac I, Tufféry B (2014) Feedback from EQRAIN uranium and plutonium analysis proficiency tests for the evaluation of method performance. Proceedings of symposium on international safeguards

  28. Nuclear fuel technology-determination of uranium in uranyl nitrate solutions of nuclear grade quality-gravimetric method. ISO 7476:2003

  29. Measurement of air moisture-climatic and thermostatic chambers-characterisation and verification. AFNOR FD X 15-140:2013

  30. Evaluation of measurement data-guide to the expression of uncertainty in measurement. JCGM 100:2008

  31. Evaluation of measurement data-supplement 1 to the “guide to the expression of uncertainty in measurement”-propagation of distributions using a Monte Carlo method. JCGM 101:2008

  32. Crozet M, Rivier C (2014) Monte Carlo simulation for the evaluation of measurement uncertainty of spent fuel analytical results. J Radioanal Nucl Chem 302:103–115

    Article  CAS  Google Scholar 

  33. Reference materials catalogue. CETAMA 2011. http://www-cetama.cea.fr/home/liblocal/docs/MATERIAUX%2020REFERENCE/MRC%2020catalogue%2005-2011%2020english.pdf. Accessed 03 Oct 2016

  34. Louvel D (2006) Balances et pesées. Techniques de l’ingénieur, p1380v2, Traité Génie Nucléaire

  35. Thaurel B (2011) Uncertainty estimation in nuclear material weighing. ESARDA Bull 46:49–56

    Google Scholar 

Download references

Acknowledgements

We are grateful to Alexandre Quemet (CEA. Nuclear Energy Division. RadioChemistry & Processes Department) for his analysis by ID TIMS and precious help in these studies. We also thank Caroline Bertorello, Christine Biscarrat and Vincent Dalier (CEA. Nuclear Energy Division. RadioChemistry & Processes Department) for their technical and quality control support. Funding was provided by CETAMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Ruas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruas, A., Messaoud, W.B., Rivier, C. et al. Validation of gravimetry for high-accuracy analysis of uranium. J Radioanal Nucl Chem 311, 1831–1838 (2017). https://doi.org/10.1007/s10967-016-5116-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5116-7

Keywords

Navigation