Skip to main content
Log in

Assessment of natural radioactivity in cements used as building materials in Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radioactivity concentrations of 226Ra, 232Th and 40K in 42 samples from different types of cements produced in Turkey were measured using gamma-ray spectrometer. The determined values were 18–143 Bq kg−1 (226Ra), 5–66 Bq kg−1 (232Th) and 142–540 Bq kg−1 (40K). Additionally, the calculated radiological hazard parameters such as absorbed dose rate, annual effective dose, radium equivalent activity, the external hazard, activity and alpha indices were found to be in the range of 38–158 nGy h−1, 188–776 µSv year−1, 41–182 Bq kg−1, 0.11–0.49, 0.15–0.65 and 0.09–0.71, respectively. Finally, the results were statistically evaluated and compared with the reported data in other countries and the international standard values given by European Commission and UNSCEAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-Dadi MM, Hassan HE, Sharshar T, Arida HA, Badran HM (2014) Environmental impact of some cement manufacturing plants in Saudi Arabia. J Radioanal Nucl Chem. doi:10.1007/s10967-014-3383-8

    Google Scholar 

  2. United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Sources and effects of ionizing radiation. 2000 report. United Nations, New York

    Google Scholar 

  3. Aslam M, Gul R, Ara T, Hussain M (2012) Assessment of radiological hazards of naturally occurring radioactive materials in cement industry. Radiat Prot Dosim. doi:10.1093/rpd/ncs018

    Google Scholar 

  4. Kpeglo DO, Lawluvi H, Faanu A, Awudu AR, Deatanyah P, Wotorchi SG, Arwui CC, Emi-Reynolds G, Darko EO (2011) Natural radioactivity and its associated radiological hazards in Ghanaian cement. J Environ Earth Sci 3(2):160–166

    Google Scholar 

  5. Turhan Ş (2008) Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. J Environ Radioact. doi:10.1016/j.jenvrad.2007.11.001

    Google Scholar 

  6. Singh LM, Kumar M, Sahoo BK, Sapra BK, Kumar R (2015) Study of natural radioactivity, radon exhalation rate and radiation doses in coal and fly ash samples from Thermal Power Plants, India. Phys Procedia. doi:10.1016/j.phpro.2015.11.070

    Google Scholar 

  7. Papaefthymiou H, Gouseti O (2008) Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece. Radiat Meas. doi:10.1016/j.radmeas.2008.03.032

    Google Scholar 

  8. Kovler K (2016) The national survey of natural radioactivity in concrete produced in Israel. J Environ Radioact. doi:10.1016/j.jenvrad.2016.03.002

    Google Scholar 

  9. Mujahid SA, Rahim A, Hussain S, Farooq M (2008) Measurement of natural radioactivity and radon exhalation rates from different brands of cement used in Pakistan. Radiat Prot Dosim. doi:10.1093/rpd/ncm497

    Google Scholar 

  10. Damla N, Cevik U, Kobya AI, Celik N, Celik A, Grieken RV (2010) Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey. J Hazard Mater. doi:10.1016/j.jhazmat.2009.11.080

    Google Scholar 

  11. Commission European (1999) Radiological protection principles concerning the natural radioactivity of building materials. Radiat Prot 112:1–16

    Google Scholar 

  12. El-Mageed AIA, El-Azab Farid M, Saleh EE, Mansour M, Mohammed AK (2014) Natural radioactivity and radiological hazards of some building materials of Aden, Yemen. J Geochem Explor. doi:10.1016/j.gexplo.2014.01.015

    Google Scholar 

  13. Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact. doi:10.1016/j.jenvrad.2006.01.009

    Google Scholar 

  14. Shoeib MY, Thabayneh KM (2014) Assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials. J Radiat Res Appl Sci. doi:10.1016/j.jrras.2014.01.004

    Google Scholar 

  15. Trevisi R, Risica S, Alessandro MD, Paradiso D, Nuccetelli C (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J Environ Radioact. doi:10.1016/j.jenvrad.2011.10.001

    Google Scholar 

  16. Lu X, Yang G, Ren C (2012) Natural radioactivity and radiological hazards of building materials in Xianyang, China. Radiat Phys Chem. doi:10.1016/j.radphyschem.2012.02.043

    Google Scholar 

  17. Damla N, Cevik U, Kobya AI, Celik A, Grieken RV, Kobya Y (2009) Characterization of gas concrete materials used in buildings of Turkey. J Hazard Mater. doi:10.1016/j.jhazmat.2009.02.092

    Google Scholar 

  18. Mohamed RI, Hamdan SK, Al-Shamani NS (2016) Evaluation of radionuclide concentrations and associated radiological hazard in marble Indices and granite used as building materials in Al Madinah Al-Munawarah. J Taibah Univ Sci. doi:10.1016/j.jtusci.2015.03.006

    Google Scholar 

  19. Rizzo S, Brai M, Basile S, Bellia S, Hauser S (2001) Gamma activity and geochemical features of building materials: estimation of gamma dose rate and indoor radon levels in Sicily. Appl Radiat Isot 55:259–265

    Article  CAS  Google Scholar 

  20. Canbaz Öztürk B, Yaprak G, Çam NF, Candan O (2015) A radiological survey of the Egrigöz granitoid, Western Anatolia/Turkey. Radiat Prot Dosim. doi:10.1093/rpd/ncv327

    Google Scholar 

  21. Karadeniz Ö, Çayrak N, Yaprak G, Akal C (2011) Terrestrial gamma exposure in the granodiorite of Bergama (Pergamon)-Kozak, Turkey. J Radioanal Nucl Chem. doi:10.1007/s10967-011-1031-0

    Google Scholar 

  22. Canbaz B, Çam NF, Yaprak G, Candan O (2010) Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey. Radiat Prot Dosim. doi:10.1093/rpd/ncq165

    Google Scholar 

  23. Anjos RM, Veiga R, Soares T, Santos AMA, Aguiar JG, Frascá MHBO, Brage JAP, Uzêda D, Mangia L, Facure A, Mosquera B, Carvalho C, Gomes PRS (2005) Natural radionuclide distribution in Brazilian commercial granites. Radiat Meas. doi:10.1016/j.radmeas.2004.05.002

    Google Scholar 

  24. Karadeniz Ö, Akal C (2014) Radiological mapping in the granodiorite area of Bergama (Pergamon) Kozak, Turkey. J Radioanal Nucl Chem. doi:10.1007/s10967-014-3216-9

    Google Scholar 

  25. Turkish Standard Institution. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055048065082077055103076076056084118085087117068121081114118067105111078098113053066065086102056081080113066119068077076110086075107108050056070076112111104073081048116109050097070099102106087122083047110102085056118043052074078080085078120097102113053073120109100103067065055101079052056118048069101074122109065056101112057068070050100109048089065120054069121069103067087053117056090081052113103056117078107043121117065061061. Accessed 23 Jul 2016

  26. Yeğinobalı A, Ertün T (2009) Çimentoda Standartlar ve Mineral Katkılar. Türkiye Çimento Müstahsilleri Birliği AR-GE Enstitüsü, Fersa Matbaacılık, Ankara

    Google Scholar 

  27. Baykara O, Karatepe S, Dogru M (2011) Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey. Radiat Meas. doi:10.1016/j.radmeas.2010.08.010

    Google Scholar 

  28. Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40(3):586–593

    Article  CAS  Google Scholar 

  29. United Nations Scientific Commettee on the Effects of Atomic Radiation (UNSCEAR) (1988) Sources, effects and risks of ionizing radiation, report to general assembly, with annexes. United Nations, New York, pp 1–49

    Google Scholar 

  30. Beretka J, Mathews PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and byproducts. Health Phys 48(1):87–95

    Article  CAS  Google Scholar 

  31. ICRP (1991) 1990 Recommendations of the international commission on radiological protection, (publication 60). Pergamon, Oxford

    Google Scholar 

  32. Al-Hwaiti MS (2015) Assessment of the radiological impacts of treated phosphogypsum used as the main constituent of building materials in Jordan. Environ Earth Sci. doi:10.1007/s12665-015-4354-2

    Google Scholar 

  33. Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YBM, Sharma S, Kassim HBA (2015) Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings. PLOS One. doi:10.1371/journal.pone.0140667

    Google Scholar 

  34. Pantelic GK, Todorovic DJ, Nikolic JD, Rajacic MM, Jankovic MM, Sarap NB (2015) Measurement of radioactivity in building materials in Serbia. J Radioanal Nucl Chem. doi:10.1007/s10967-014-3745-2

    Google Scholar 

  35. Sharma N, Singh J, Esakki SC, Tripathi RM (2016) A study of the natural radioactivity and radon exhalation rate in some cements used in India and its radiological significance. J Radiat Res Appl Sci. doi:10.1016/j.jrras.2015.09.001

    Google Scholar 

  36. Ravisankar R, Vanasundari K, Suganya M, Raghu Y, Rajalakshmi A, Chandrasekaran A, Sivakumar S, Chandramohan J, Vijayagopal P, Venkatraman B (2014) Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl Radiat Isot. doi:10.1016/j.apradiso.2013.12.005

    Google Scholar 

  37. Flores OB, Estrada AM, Suarez RR, Zerquera JT, Perez AH (2008) Natural radionuclide content in building materials and gamma dose rate in dwellings in Cuba. J Environ Radioact. doi:10.1016/j.jenvrad.2008.08.00

    Google Scholar 

  38. Faheem M, Mujahid SA, Matiullah (2008) Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province Pakistan. Radiat Meas. doi:10.1016/j.radmeas.2008.02.014

    Google Scholar 

  39. Stojanovska Z, Nedelkovski D, Ristova M (2010) Natural radioactivity and human exposure by raw materials and end product from cement industry used as building materials. Radiat Meas. doi:10.1016/j.radmeas.2010.06.023

    Google Scholar 

  40. Chowdhury MI, Alam MN, Ahmed AKS (1998) Concentration of radionuclides in building and ceramic materials of Bangladesh and evaluation of radiation hazard. J Radioanal Nucl Chem. doi:10.1007/BF02388016

    Google Scholar 

  41. Amrani D, Tahtat M (2001) Natural radioactivity in Algerian building materials. Appl Radiat Isot. doi:10.1016/S0969-8043(00)00304-3

    Google Scholar 

  42. Lu X, Chao S, Yang F (2014) Determination of natural radioactivity and associated radiation hazard in building materials used in Weinan, China. Radiat Phy Chem. doi:10.1016/j.radphyschem.2014.02.021

    Google Scholar 

  43. El-Taher A, Makhluf S, Nossair A, Abdel Halim AS (2010) Assessment of natural radioactivity levels and radiation hazards due to cement industry. Appl Radiat Isot. doi:10.1016/j.apradiso.2009.09.001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Özdiş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdiş, B.E., Çam, N.F. & Canbaz Öztürk, B. Assessment of natural radioactivity in cements used as building materials in Turkey. J Radioanal Nucl Chem 311, 307–316 (2017). https://doi.org/10.1007/s10967-016-5074-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5074-0

Keywords

Navigation