Skip to main content
Log in

Ionic liquid-salt based aqueous biphasic system for rapid separation of no-carrier-added 203Pb from proton irradiated natTl2CO3 target

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Environmentally benign aqueous biphasic systems (ABS) are recognized as green systems in analytical research. In this study, a salt–salt ABS composing of water soluble ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([bmim]Cl) and kosmotropic salt K2HPO4 have been used for the separation of no-carrier-added (NCA) 203Pb from proton irradiated natTl2CO3 target. The optimum separation condition was obtained with 1 min shaking and 10 min settling time of the ABS, where ~60 % of NCA 203Pb was extracted into the IL rich phase with nominal contamination from bulk Tl. The reported separation technique is simple, rapid and meets the demands of green chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lahiri S (2016) Across the energy scale: from eV to GeV. J Radioanal Nucl Chem 307:1571–1586

    Article  CAS  Google Scholar 

  2. Freire MG, Clàudio AFM, Araùjo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41:4966–4995

    Article  CAS  Google Scholar 

  3. Maiti M, Datta A, Lahiri S (2015) Aqueous biphasic separation of 97Ru and 95,96Tc from yttrium. RSC Adv 5:80919–80924

    Article  CAS  Google Scholar 

  4. Dutta B, Lahiri S, Tomar BS (2013) Application of PEG based aqueous biphasic systems in extraction and separation of no-carrier-added 183Re from bulk tantalum. Radiochim Acta 101:19–26

    Article  CAS  Google Scholar 

  5. Lahiri S, Roy K (2009) A green approach for sequential extraction of heavy metals from Li irradiated Au target. J Radioanal Nucl Chem 281:531–534

    Article  CAS  Google Scholar 

  6. Ghosh K, Maiti M, Lahiri S (2013) Separation of no-carrier-added 109Cd from natural silver target using RTIL 1-butyl-3-methylimidazolium hexafluorophosphate. J Radioanal Nucl Chem 298:1049–1054

    Article  CAS  Google Scholar 

  7. Maiti M, Ghosh K, Lahiri S (2015) Green methods for the radiochemical separations of no-carrier-added 61Cu, 62Zn from 7Li irradiated cobalt target. J Radioanal Nucl Chem 303:2033–2040

    CAS  Google Scholar 

  8. Berthod A, Ruiz-Ángel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18

    Article  CAS  Google Scholar 

  9. Bridges NJ, Gutowski KE, Rogers RD (2007) Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS). Green Chem 9:177–183

    Article  CAS  Google Scholar 

  10. Ghosh K, Maiti M, Lahiri S, Hussain VA (2014) Ionic liquid-salt based aqueous biphasic system for separation of 109Cd from silver target. J Radioanal Nucl Chem 302:925–930

    Article  CAS  Google Scholar 

  11. Ghosh K, Lahiri S, Maiti M (2016) Separation of no-carrier-added 195(m,g),197mHg from Au target by ionic liquid and salt based aqueous biphasic systems. J Radioanal Nucl Chem. doi:10.1007/s10967-016-4931-1

    Google Scholar 

  12. Garmestain K, Milenic DE, Brady ED, Plascjak PS, Brechbiel MW (2005) Purification of cyclotron-produced 203Pb for labeling Herceptin. Nucl Med Biol 32:301–305

    Article  Google Scholar 

  13. Miao Y, Figueroa SD, Fisher DR, Moore HA, Testa RF, Hoffman TJ, Quinn TP (2008) 203Pb-labeled α-melanocyte-stimulating hormone peptide as an imaging probe for melanoma detection. J Nucl Med 49:823–829

    Article  CAS  Google Scholar 

  14. Qaim SM, Weinreich R, Ollig H (1979) Production of 201Tl and 203Pb via proton induced nuclear reactions on natural thallium. Int J Appl Radiat Isot 30:85–95

    Article  CAS  Google Scholar 

  15. Al-Saleh FS, Al-Harbi AA, Azzam A (2007) Yield and excitation function measurements of some nuclear reactions on natural thallium induced by protons leading to the production of medical radioisotopes 201Tl and 203Pb. Radiochim Acta 95:127–132

    Article  CAS  Google Scholar 

  16. Tàrkànyi F, Ditrói F, Hermanne A, Takàcs S, Adam-Rebeles R, Walravens N, Cichelli O, Ignatyuk AV (2013) Investigation of activation cross-sections of proton induced nuclear reactions on natTl up to 42 MeV: review, new data and evaluation. Appl Radiat Isot 74:109–122

    Article  Google Scholar 

  17. Lagunas-Solar MC, Jungerman JA, Peek NF, Theus RM (1978) Thallium-201 yields and excitation functions for the lead radioactivities produced by irradiation of natural thallium with 15–60 MeV protons. Int J Appl Radiat Isot 29:159–165

    Article  CAS  Google Scholar 

  18. Rebeles RA, Winkel PVD, Hermanne A, Tàrkànyi F, Takàcs S (2012) Experimental excitation functions of deuteron induced reactions on natural thallium up to 50 MeV. Nucl Instrum Meth B 288:94–101

    Article  Google Scholar 

  19. Rebeles RA, Hermanne A, Winkel PVD, Tàrkànyi F, Takàcs S (2011) Activation cross section of deuteron induced reactions on natural thallium for the production of 203Pb. J Korean Phys Soc 59:1975–1978

    Article  CAS  Google Scholar 

  20. Merrill JC, Lambrecht RM, Wolf AP (1973) Cyclotron production of lead-203 for radiopharmaceutical applications. Int J Appl Radiat Isot 24:701–702

    Article  CAS  Google Scholar 

  21. Walt TNVD, Coetzee PP (1989) Separation of 203Pb by ion-exchange chromatography on chelex 100 after production of 203Pb by the Pb(p, xn)203Bi ECβ+203Pb nuclear reaction. Talanta 36:451–455

    Article  Google Scholar 

  22. Henriksen G, Hoff P (1998) Isolation of cyclotron produced 205Bi, 206Bi and 203Pb using a lead-selective extraction chromatographic resin. Appl Radiat Isot 49:357–359

    Article  CAS  Google Scholar 

  23. Nayak D, Lahiri S, Ramaswami A (2002) Alternative radiochemical heavy ion activation methods for the production and separation of thallium radionuclides. Appl Radiat Isot 57:483–489

    Article  CAS  Google Scholar 

  24. Walt TNVD, Strelow FEW (1982) Separation of lead-203 from cyclotron-bombarded thallium targets by ion-exchange chromatography. Talanta 29:583–587

    Article  Google Scholar 

  25. Walt TNVD, Coetzee PP (1989) Separation of 201Tl and 203Pb by ion-exchange chromatography on AG 50 W-X4 and Chelex 100, after proton bombardment of a thallium cyclotron target. S Afr J Chem 42:68–72

    Google Scholar 

  26. Toribara TV, Koval L (1978) The separation of 203Pb from a thallium target. Int J Appl Radiat Isot 29:196–198

    Article  CAS  Google Scholar 

  27. Girardi F, Goetz L, Sabbioni E, Marafante E, Merlini M, Acerbi E, Birattari C, Castiglioni M, Resmini F (1975) Preparation of 203Pb compounds for studies on pathway and effects of lead pollution. Int J Appl Radiat Isot 26:267–277

    Article  CAS  Google Scholar 

  28. Horlock PL, Thakur ML, Watson IA (1975) Cyclotron produced lead-203. Postgrad Med J 51:751–754

    Article  CAS  Google Scholar 

  29. Lambrecht RM, Packer S, Merrill JC, Atkins HL, Wolf AP, Bradley-Moore PR (1977) Production of 203Pb-tris-hydroxymethyl amino methane. US Patent 4011307

  30. Lahiri S, Sarkar S (2008) Separation of no-carrier-added Tl and Pb radionuclides using poly(N-vinylpyrrolidone). J Radioanal Nucl Chem 277:513–516

    Article  CAS  Google Scholar 

  31. Kozlova MD, Levin VI, Malinin AB, Kondratyeva TI, Sevastyanova AS, Kurenkov NV (1982) The production of carrier-free lead-203. Int J Appl Radiat Isot 33:553–555

    Article  CAS  Google Scholar 

  32. Dutta B, Maiti M, Lahiri S (2011) Production and separation of no-carrier-added thallium isotopes from proton irradiated natHg2Cl2 matrix. Appl Radiat Isot 69:1337–1342

    Article  CAS  Google Scholar 

  33. Gupta SD, Abbasi SA, Raman R, Roy DL (1980) Studies on pollutants IV. electrolytical recovery of lead from battery scrap. J Electrochem Soc 127:533–539

    Article  Google Scholar 

  34. Sipos P, Capewell SG, May PM, Hefter GT, Laurenczy G, Lukàcs F, Roulet R (1997) 205Tl-NMR and UV–visible spectroscopic determination of the formation constants of aqueous thallium(I) hydroxo-complexes. J Sol Chem 26:419–431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We heartily thank BARC–TIFR Pelletron staffs for their help and co-operation. This work has been carried out as part of the SINP-DAE-12 five year plan project “Trace Ultratrace Analysis and Isotope Production (TULIP)”. KS and NN are thankful to University Grants Commission (UGC), India for their fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Lahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, K., Lahiri, S., Sarkar, K. et al. Ionic liquid-salt based aqueous biphasic system for rapid separation of no-carrier-added 203Pb from proton irradiated natTl2CO3 target. J Radioanal Nucl Chem 310, 1311–1316 (2016). https://doi.org/10.1007/s10967-016-4982-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4982-3

Keywords

Navigation