Skip to main content
Log in

Development and mass production of a mixture of LAB- and DIN-based gadolinium-loaded liquid scintillator for the NEOS short-baseline neutrino experiment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new experiment, called the NEutrino Oscillation at Short baseline (NEOS), is proposed on the site of Hanbit Reactors at Yonggwang, South Korea, to investigate a reactor antineutrino anomaly. The homogeneous NEOS detector having a 1000-l target volume was constructed and deployed at the tendon gallery 25 m away from the reactor core. The NEOS detector employs a linear alkylbenzene (LAB) based gadolinium loaded liquid scintillator with 10 % di-isopropylnaphthalene (DIN) based liquid scintillator to improve the particle identification via pulse shape discrimination. In this paper, we report the procedure for the mass production of the Gd-loaded scintillator for the NEOS detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abe Y, Aberle C, Anjos JC, Double Chooz Collaboration et al (2012) Reactor electron antineutrino disappearance in the Double Chooz experiment. Phys Rev D86(5):052008

    Google Scholar 

  2. An FP, Daya Bay Collaboration et al (2012) Observation of electron-antineutrino disappearance at daya bay. Phys Rev Lett 108(17):171803

    Article  Google Scholar 

  3. Ahn JK, RENO Collaboration et al (2012) Observation of reactor electron antineutrinos disappearance in the RENO experiment. Phys Rev Lett 108(19):191802

    Article  CAS  Google Scholar 

  4. Lightfoot PK et al (2004) Development of a gadolinium-loaded liquid scintillator for solar neutrino detection and neutron measurements. Nucl Instrum Method A 522:439

    Article  CAS  Google Scholar 

  5. Alimonti G et al (2000) Light propagation in a large volume liquid scintillator. Nucl Instrum Method A 440:360

    Article  CAS  Google Scholar 

  6. Schreckenbach K, Colvin G, von Feilitzsch F (1985) Determination of the anti-neutrino spectrum from u-235 thermal neutron fission products up to 9.5 Mev. Phys Lett B 160:325

    Article  Google Scholar 

  7. von Feilitzsch F, Schreckenbach K (1982) Experimental beta spectra From 239Pu and 235U thermal neutron fission products and their correlated anti-neutrinos spectra. Phys Lett B 118:162

    Article  Google Scholar 

  8. Hahn AA et al (1989) Anti-neutrino spectra from 241Pu and 239Pu thermal neutron fission products. Phys Lett B 218:365

    Article  CAS  Google Scholar 

  9. Mention G et al (2011) The reactor antineutrino anomaly. Phys Rev D 83:073006

    Article  Google Scholar 

  10. Muller Th A et al (2011) Improved predictions of reactor antineutrino spectra. http://arxiv.org/abs/arXiv:1101.2663

  11. Hayes AC, Friar JL, Garvey GT, Duligur I, Gerard J, Kawano T, Mills RW (2015) Possible origins and implications of the shoulder in reactor neutrino spectra. Phys Rev D 92:033015

    Article  Google Scholar 

  12. Criier M (2015) Reactors antineutrino anomalies and searches for sterile neutrinos. J Phys Conf Ser 593(1):012005

    Article  Google Scholar 

  13. Fan JJ, Langacker P (2012) Light sterile neutrinos and short baseline neutrino oscillation anomalies. JHEP 1204:083

    Article  Google Scholar 

  14. Yeo IS et al (2014) Development of a gadolinium-loaded liquid scintillator for the hanaro short baseline prototype detector. J Kor Phys Soc 64(3):377

    Article  CAS  Google Scholar 

  15. Boireau G et al (2015) Online monitoring of the osiris reactor with the nucifer neutrino detector. arXiv:1509.05610v1

  16. Kim BR et al (2015) Pulse shape discrimination capability of metal-loaded organic liquid scintillators for a short baseline reactor neutrino experiment. Phys Scr 90(5):055302

    Article  Google Scholar 

  17. Kim BR, Joo KK (2015) Mass production of a liquid scintillator for the NEOS experiment. New Physics Sae Mulli 65(11):1081

    Article  CAS  Google Scholar 

  18. Ding Y, Zhang Z, Liu J, Wang Z, Zhou P, Zhao Y (2008) A new gadolinium-loaded liquid scintillator for reactor neutrino detection. Nucl Instrum Method A 584:238

    Article  CAS  Google Scholar 

  19. Yeh M, Garnov A, Hahn RL (2007) Gadolinium-loaded liquid scintillator for high-precision measurements of antineutrino oscillations and the mixing angle, θ13. Nucl Instrum Method A 578:329

    Article  CAS  Google Scholar 

  20. Song SH et al (2013) Feasibility study of a gadolinium-loaded DIN-based liquid scintillator. J Kor Phys Soc 63(5):970

    Article  CAS  Google Scholar 

  21. Yeo IS et al (2013) Development of a gadolinium-loaded LAB-based aqueous scintillator for neutrino detection. J Kor Phys Soc 65(1):22

    Article  Google Scholar 

  22. Park JS, Kim SB, Lee J, Kim BC, Kim SH, Joo KK (2009) Feasibility study of a liquid scintillator using domestically produced linear alkyl benzene (LAB). New Phys 58:62

    CAS  Google Scholar 

  23. Park JS, RENO Collaboration et al (2013) Production and optical properties of Gd-loaded liquid scintillator for the RENO neutrino detector. Nucl Instrum Method A 707:45

    Article  CAS  Google Scholar 

  24. So SH et al (2013) Investigation of the physical and the optical properties of various base solvents for the liquid scintillator in a neutrino detector. J Kor Phys Soc 62(1):26

    Article  CAS  Google Scholar 

  25. Danilov NA et al (2007) Extraction methods in development of Gd-loaded liquid scintillators for detection of low-energy antineutrino: 1 gadolinium extraction with carboxylic acids. Radiochemistry 49(3):281

    Article  CAS  Google Scholar 

  26. Danilov NA et al (2009) Extraction methods in development of gd-loaded liquid organic scintillators for antineutrino detection: 2. Scintillators based on solutions of gadolinium 2-methylvalerate. Radiochemistry 51(3):274

    Article  CAS  Google Scholar 

  27. Kim BC, Seo SW, Joo KK (2011) Measurement of the density of liquid scintillator solvents for neutrino experiments. New Phys 61(8):759

    CAS  Google Scholar 

  28. Elisei F, Gatti F, Goretti A et al (1997) Measurements of liquid scintillator properties for the borexino detector. Nucl Instrum Method A 400:53

    Article  CAS  Google Scholar 

  29. Barabanov IR et al. (2008) Performance and stability of a 2.4 ton Gd organic liquid scintillator Target for \( \bar{\nu }_{{\text{e}}} \) Detection. arXiv:0803.1577v1

Download references

Acknowledgments

This work was supported by grants from the National Research Foundation (NRF) of the Korean government (2012M2B2A6030210), Samsung Science & Technology Foundation (SSTF-BA1402-06), and Grant No. IBS-R016-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Kwang Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.R., Han, B., Jeon, E. et al. Development and mass production of a mixture of LAB- and DIN-based gadolinium-loaded liquid scintillator for the NEOS short-baseline neutrino experiment. J Radioanal Nucl Chem 310, 311–316 (2016). https://doi.org/10.1007/s10967-016-4826-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4826-1

Keywords

Navigation